To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
During analysis, the `ComponentDecoratorHandler` passes the component
template to the `parseTemplate()` function. Previously, there was little or
no information about the original source file, where the template is found,
passed when calling this function.
Now, we correctly compute the URL of the source of the template, both
for external `templateUrl` and in-line `template` cases. Further in the
in-line template case we compute the character range of the template
in its containing source file; *but only in the case that the template is
a simple string literal*. If the template is actually a dynamic value like
an interpolated string or a function call, then we do not try to add the
originating source file information.
The translator that converts Ivy AST nodes to TypeScript now adds these
template specific source mappings, which account for the file where
the template was found, to the templates to support stepping through the
template creation and update code when debugging an Angular application.
Note that some versions of TypeScript have a bug which means they cannot
support external template source-maps. We check for this via the
`canSourceMapExternalTemplates()` helper function and avoid trying to
add template mappings to external templates if not supported.
PR Close#28055