Similar to https://github.com/angular/angular/pull/33633, this commit is
needed to fix an outage with the Angular Kythe indexer.
Crash logs:
```
TypeError: Cannot read property 'text' of undefined
at NodeObject.getFullText (typescript/stable/lib/typescript.js:121443:57)
at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:67:34)
at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
at typescript/stable/lib/typescript.js:90553:85
at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
at processRootFile (typescript/stable/lib/typescript.js:90383:13)
at typescript/stable/lib/typescript.js:89399:60
at Object.forEach (typescript/stable/lib/typescript.js:280:30)
```
PR Close#33660
When ngcc is configured to generate reexports for a package using the
`generateDeepReexports` configuration option, it could incorrectly
render the reexports as often as the number of compiled classes in the
declaration file. This would cause compilation errors due to duplicated
declarations.
PR Close#33658
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.
There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.
Fixes#32869
PR Close#33551
When template type checking is configured with `strictDomEventTypes` or
`strictOutputEventTypes` disabled, in compilation units that have
`noImplicitAny` enabled but `strictNullChecks` disabled, a template type
checking error could be produced for certain event handlers.
The error is avoided by letting an event handler in the generated TCB
always have an explicit `any` return type.
Fixes#33528
PR Close#33550
We already have special cases for the `__spread` helper function and with this change we handle the new tslib helper introduced in version 1.10 `__spreadArrays`.
For more context see: https://github.com/microsoft/tslib/releases/tag/1.10.0Fixes: #33614
PR Close#33617
This commit fixes a crash in the Angular Kythe indexer caused by failure
to retrieve `SourceFile` in a `Statement`.
Crash logs:
TypeError: Cannot read property 'text' of undefined
at Object.getTokenPosOfNode (typescript/stable/lib/typescript.js:8957:72)
at NodeObject.getStart (typescript/stable/lib/typescript.js:121419:23)
at NodeObject.getLeadingTriviaWidth (typescript/stable/lib/typescript.js:121439:25)
at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:64:49)
at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
at typescript/stable/lib/typescript.js:90553:85
at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
at processRootFile (typescript/stable/lib/typescript.js:90383:13)
PR Close#33588
When decorating classes with ivy definitions (e.g. `ɵfac` or `ɵdir`)
the inner name of the class declaration must be used.
This is because in ES5 the definitions are inside the class's IIFE
where the outer declaration has not yet been initialized.
PR Close#33533
In ES5 the class consists of an outer variable declaration that is
initialised by an IIFE. Inside the IIFE the class is implemented by
an inner function declaration that is returned from the IIFE.
This inner declaration may have a different name to the outer
declaration.
This commit overrides `getInternalNameOfClass()` and
`getAdjacentNameOfClass()` in `Esm5ReflectionHost` with methods that
can find the correct inner declaration name identifier.
PR Close#33533
When compiling an Angular decorator (e.g. Directive), @angular/compiler
generates an 'expression' to be added as a static definition field
on the class, a 'type' which will be added for that field to the .d.ts
file, and a statement adjacent to the class that calls `setClassMetadata()`.
Previously, the same WrappedNodeExpr of the class' ts.Identifier was used
within each of this situations.
In the ngtsc case, this is proper. In the ngcc case, if the class being
compiled is within an ES5 IIFE, the outer name of the class may have
changed. Thus, the class has both an inner and outer name. The outer name
should continue to be used elsewhere in the compiler and in 'type'.
The 'expression' will live within the IIFE, the `internalType` should be used.
The adjacent statement will also live within the IIFE, the `adjacentType` should be used.
This commit introduces `ReflectionHost.getInternalNameOfClass()` and
`ReflectionHost.getAdjacentNameOfClass()`, which the compiler can use to
query for the correct name to use.
PR Close#33533
This commit moves nested i18n section detection to an earlier stage where we convert HTML AST to Ivy AST. This also gives a chance to produce better diagnistic message for nested i18n sections, that also includes a file name and location.
PR Close#33583
These exports are no longer used by the CLI since 7.1.0. Since major versions of the CLI are now locked to major versions of the framework, a CLI user will not be able to use FW 9.0+ on an outdated version (<7.1.0) of the CLI that uses these old APIs.
PR Close#33242
During static evaluation of expressions within ngtsc, it may occur that
certain expressions or just parts thereof cannot be statically
interpreted for some reason. The static interpreter keeps track of the
failure reason and the code path that was evaluated by means of
`DynamicValue`, which will allow descriptive errors. In some situations
however, the static interpreter would throw an exception instead,
resulting in a crash of the compilation. Not only does this cause
non-descriptive errors, more importantly does it prevent the evaluated
result from being partial, i.e. parts of the result can be dynamic if
their value does not have to be statically available to the compiler.
This commit refactors the static interpreter to never throw errors for
certain expressions that it cannot evaluate.
Resolves FW-1582
PR Close#33453
Previously the compiler would crash if a pipe was encountered which did not
match any pipe in the scope of a template.
This commit introduces a new diagnostic error for unknown pipes instead.
PR Close#33454
Previously the template binder would crash when encountering an unknown
localref (# reference) such as `<div #ref="foo">` when no directive has
`exportAs: "foo"`.
With this commit, the compiler instead generates a template diagnostic error
informing the user about the invalid reference.
PR Close#33454
Previously declarations that were imported via a namespace import
were given the same `bestGuessOwningModule` as the context
where they were imported to. This causes problems with resolving
`ModuleWithProviders` that have a type that has been imported in
this way, causing errors like:
```
ERROR in Symbol UIRouterModule declared in
.../@uirouter/angular/uiRouterNgModule.d.ts
is not exported from
.../@uirouter/angular/uirouter-angular.d.ts
(import into .../src/app/child.module.ts)
```
This commit modifies the `TypescriptReflectionHost.getDirectImportOfIdentifier()`
method so that it also understands how to attach the correct `viaModule` to
the identifier of the namespace import.
Resolves#32166
PR Close#33495
Now that we've replaced `ngBaseDef` with an abstract directive definition, there are a lot more cases where we generate a directive definition without a selector. These changes make it so that we don't generate the `selectors` array if it's going to be empty.
PR Close#33431
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.
PR Close#33264
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.
A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.
This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.
Fixes#32981
PR Close#32987
In Angular View Engine, there are two kinds of decorator inheritance:
1) both the parent and child classes have decorators
This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).
2) only the parent class has a decorator
If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.
This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.
Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.
PR Close#33362
When upgrading an Angular application to a new version using the Angular
CLI, built-in schematics are being run to update user code from
deprecated patterns to the new way of working. For libraries that have
been built for older versions of Angular however, such schematics have
not been executed which means that deprecated code patterns may still be
present, potentially resulting in incorrect behavior.
Some of the logic of schematics has been ported over to ngcc migrations,
which are automatically run on libraries. These migrations achieve the
same goal of the regular schematics, but operating on published library
sources instead of used code.
PR Close#33362
Previously, the (currently disabled) undecorated parent migration in
ngcc would produce errors when a base class could not be determined
statically or when a class extends from a class in another package. This
is not ideal, as it would cause the library to fail compilation without
a workaround, whereas those problems are not guaranteed to cause issues.
Additionally, inheritance chains were not handled. This commit reworks
the migration to address these limitations.
PR Close#33362
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:
1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.
2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.
To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.
PR Close#33362
A class that is provided as Angular service is required to have an
`@Injectable()` decorator so that the compiler generates its injectable
definition for the runtime. Applications are automatically migrated
using the "missing-injectable" schematic, however libraries built for
older version of Angular may not yet satisfy this requirement.
This commit ports the "missing-injectable" schematic to a migration that
is ran when ngcc is processing a library. This ensures that any service
that is provided from an NgModule or Directive/Component will have an
`@Injectable()` decorator.
PR Close#33362
ngcc has an internal cache of computed decorator information for
reflected classes, which could previously be mutated by consumers of the
reflection host. With the ability to inject synthesized decorators, such
decorators would inadvertently be added into the array of decorators
that was owned by the internal cache of the reflection host, incorrectly
resulting in synthesized decorators to be considered real decorators on
a class. This commit fixes the issue by cloning the cached array before
returning it.
PR Close#33362
This patch ensures that the `[style]` and `[class]` based bindings
are directly applied to an element's style and className attributes.
This patch optimizes the algorithm so that it...
- Doesn't construct an update an instance of `StylingMapArray` for
`[style]` and `[class]` bindings
- Doesn't apply `[style]` and `[class]` based entries using
`classList` and `style` (direct attributes are used instead)
- Doesn't split or iterate over all string-based tokens in a
string value obtained from a `[class]` binding.
This patch speeds up the following cases:
- `<div [class]>` and `<div class="..." [class]>`
- `<div [style]>` and `<div style="..." [style]>`
The overall speec increase is by over 5x.
PR Close#33336
The template type checking abilities of the Ivy compiler are far more
advanced than the level of template type checking that was previously
done for Angular templates. Up until now, a single compiler option
called "fullTemplateTypeCheck" was available to configure the level
of template type checking. However, now that more advanced type checking
is being done, new errors may surface that were previously not reported,
in which case it may not be feasible to fix all new errors at once.
Having only a single option to disable a large number of template type
checking capabilities does not allow for incrementally addressing newly
reported types of errors. As a solution, this commit introduces some new
compiler options to be able to enable/disable certain kinds of template
type checks on a fine-grained basis.
PR Close#33365
View Engine correctly infers the type of local refs to directives or to
<ng-template>s, just not to DOM nodes. This commit splits the
checkTypeOfReferences flag into two separate halves, allowing the compiler
to align with this behavior.
PR Close#33365
For elements that have a text attribute, it may happen that the element
is matched by a directive that consumes the attribute as an input. In
that case, the template type checker will validate the correctness of
the attribute with respect to the directive's declared type of the
input, which would typically be `boolean` for the `disabled` input.
Since empty attributes are assigned the empty string at runtime, the
template type checker would report an error for this template.
This commit introduces a strictness flag to help alleviate this
particular situation, effectively ignoring text attributes that happen
to be consumed by a directive.
PR Close#33365
During the creation of an Angular program in the compiler, a check is
done to verify whether the version of TypeScript is considered
supported, producing an error if it is not. This check was missing in
the Ivy compiler, so users may have ended up running an unsupported
TypeScript version inadvertently.
Resolves FW-1643
PR Close#33377
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.
Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.
This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.
Fixes#30080
PR Close#33131
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.
For example, you could imagine an input of the form:
```typescript
@Input() get value(): string {
return this._value;
}
set value(v: {toString(): string}) {
this._value = v.toString();
}
```
Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.
Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.
To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static field with the name ngAcceptInputType_value. If such a field is found
the type-checking expression for the input will use the static field's type
instead of the type for the @Input field,allowing for the expression of a
type conversion between the binding expression and the value being written
to the input's field.
To solve the case above, for example, MatInput might write:
```typescript
class MatInput {
// rest of the directive...
static ngAcceptInputType_value: {toString(): string};
}
```
FW-1475 #resolve
PR Close#33243
Prior to this change, a method call of a local template variable would
incorrectly be considered a call to a method on the component class.
For example, this pattern would produce an error:
```
<ng-template let-method>{{ method(1) }}</ng-template>
```
Here, the method call should be targeting the `$implicit` variable on
the template context, not the component class. This commit corrects the
behavior by first resolving methods in the template before falling back
on the component class.
Fixes#32900
PR Close#33132
In View Engine, with fullTemplateTypeCheck mode disabled, the type of any
inferred based on the entity being referenced. This is a bug, since the
goal with fullTemplateTypeCheck: false is for Ivy and VE to be aligned in
terms of type inference.
This commit adds a 'checkTypeOfReference' flag in the TypeCheckingConfig
to control this inference, and sets it to false when fullTemplateTypeCheck
is disabled.
PR Close#33261
Libraries can expose directive/component base classes that will be
used by consumer applications. Using such a base class from another
compilation unit works fine with "ngtsc", but when using "ngc", the
compiler will thrown an error saying that the base class is not
part of a NgModule. e.g.
```
Cannot determine the module for class X in Y! Add X to the NgModule to fix it.
```
This seems to be because the logic for distinguishing directives from
abstract directives is scoped to the current compilation unit within
ngc. This causes abstract directives from other compilation units to
be considered as actual directives (causing the exception).
PR Close#33347
When computing i18n messages for templates there are two passes.
This is because messages must be computed before any whitespace
is removed. Then on a second pass, the messages must be recreated
but reusing the message ids from the first pass.
Previously ICUs were losing their legacy ids that had been computed
via the first pass. This commit fixes that by keeping track of the
message from the first pass (`previousMessage`) for ICU placeholder
nodes.
// FW-1637
PR Close#33318
This commit adapts the private NgModule re-export system (using aliasing) to
ngcc. Not all ngcc compilations are compatible with these re-exports, as
they assume a 1:1 correspondence between .js and .d.ts files. The primary
concern here is supporting them for commonjs-only packages.
PR Close#33177
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).
A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.
For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:
```typescript
import {FooModule} from 'foo/module';
```
In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:
1. The compiler would have to reverse the path mapping in order to determine
a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
mapped in the program at all.
The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.
It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.
To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName
This has several effects:
1. It guarantees anyone depending on the NgModule will be able to import its
directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
on from code on NPM. Effectively, this private exported name will be a
part of the package's .d.ts API, and cannot be changed in a non-breaking
fashion.
Fixes#29361
FW-1610 #resolve
PR Close#33177
Previously, the `FileSystem` abstraction featured a `mkdir()` method. In
`NodeJSFileSystem` (the default `FileSystem` implementation used in
actual code), the method behaved similar to Node.js' `fs.mkdirSync()`
(i.e. failing if any parent directory is missing or the directory exists
already). In contrast, `MockFileSystem` (which is the basis or mock
`FileSystem` implementations used in tests) implemented `mkdir()` as an
alias to `ensureDir()`, which behaved more like Node.js'
`fs.mkdirSync()` with the `recursive` option set to `true` (i.e.
creating any missing parent directories and succeeding if the directory
exists already).
This commit fixes this inconsistency by removing the `mkdir()` method,
which was not used anyway and only keeping `ensureDir()` (which is
consistent across our different `FileSystem` implementations).
PR Close#33237
When `ngcc` is running in parallel mode (usually when run from the
command line) and the `createNewEntryPointFormats` option is set to true
(e.g. via the `--create-ivy-entry-points` command line option), it can
happen that two workers end up trying to create the same directory at
the same time. This can lead to a race condition, where both check for
the directory existence, see that the directory does not exist and both
try to create it, with the second failing due the directory's having
already been created by the first one. Note that this only affects
directories and not files, because `ngcc` tasks operate on different
sets of files.
This commit avoids this race condition by allowing `FileSystem`'s
`ensureDir()` method to not fail if one of the directories it is trying
to create already exists (and is indeed a directory). This is fine for
the `ensureDir()` method, since it's purpose is to ensure that the
specified directory exists. So, even if the `mkdir()` call failed
(because the directory exists), `ensureDir()` has still completed its
mission.
Related discussion: https://github.com/angular/angular/pull/33049#issuecomment-540485703
FW-1635 #resolve
PR Close#33237
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.
For example, you could imagine an input of the form:
```typescript
@Input() get value(): string {
return this._value;
}
set value(v: {toString(): string}) {
this._value = v.toString();
}
```
Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.
Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.
To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.
To solve the case above, for example, MatInput might write:
```typescript
class MatInput {
// rest of the directive...
static ngCoerceInput_value(value: {toString(): string}): string {
return null!;
}
}
```
FW-1475 #resolve
PR Close#33243
As a hack to get the Ivy compiler ngtsc off the ground, the existing
'allowEmptyCodegenFiles' option was used to control generation of ngfactory
and ngsummary shims during compilation. This option was selected since it's
enabled in google3 but never enabled in external projects.
As ngtsc is now mature and the role shims play in compilation is now better
understood across the ecosystem, this commit introduces two new compiler
options to control shim generation:
* generateNgFactoryShims controls the generation of .ngfactory shims.
* generateNgSummaryShims controls the generation of .ngsummary shims.
The 'allowEmptyCodegenFiles' option is still honored if either of the above
flags are not set explicitly.
PR Close#33256
Currently if a `ModuleWithProviders` is missng its generic type, we throw a cryptic error like:
```
error TS-991010: Value at position 3 in the NgModule.imports of TodosModule is not a reference: [object Object]
```
These changes add a better error to make it easier to debug.
PR Close#33187
Until now, the template type checker has not checked any of the event
bindings that could be present on an element, for example
```
<my-cmp
(changed)="handleChange($event)"
(click)="handleClick($event)"></my-cmp>
```
has two event bindings: the `change` event corresponding with an
`@Output()` on the `my-cmp` component and the `click` DOM event.
This commit adds functionality to the template type checker in order to
type check both kind of event bindings. This means that the correctness
of the bindings expressions, as well as the type of the `$event`
variable will now be taken into account during template type checking.
Resolves FW-1598
PR Close#33125
In ES5 modules, the class declarations consist of an IIFE with inner
and outer declarations that represent the class. The `EsmReflectionHost`
has logic to ensure that `getDeclarationOfIdentifier()` always returns the
outer declaration.
Before this commit, if an identifier referred to an alias of the inner
declaration, then `getDeclarationOfIdentifier()` was failing to find
the outer declaration - instead returning the inner declaration.
Now the identifier is correctly resolved up to the outer declaration
as expected.
This should fix some of the failing 3rd party packages discussed in
https://github.com/angular/ngcc-validation/issues/57.
PR Close#33252
This commit fixes ngtsc's import generator to use the ReflectionHost when
looking through the exports of an ES module to find the export of a
particular declaration that's being imported. This is necessary because
some module formats like CommonJS have unusual export mechanics, and the
normal TypeScript ts.TypeChecker does not understand them.
This fixes an issue with ngcc + CommonJS where exports were not being
enumerated correctly.
FW-1630 #resolve
PR Close#33192
Normally, when ngcc encounters a package with missing dependencies while
attempting to determine a compilation ordering, it will ignore that package.
This commit adds a configuration for a flag to tell ngcc to compile the
package anyway, regardless of any missing dependencies.
FW-1931 #resolve
PR Close#33192
In the ReflectionHost API, a 'viaModule' indicates that a particular value
originated in another absolute module. It should always be 'null' for values
originating in relatively-imported modules.
This commit fixes a bug in the CommonJsReflectionHost where viaModule would
be reported even for relatively-imported values, which causes invalid import
statements to be generated during compilation.
A test is added to verify the correct behavior.
FW-1628 #resolve
PR Close#33192
This allows disabling parallelism in ngcc if desired, which is mainly useful
for debugging. The implementation creates the flag and passes its value to
mainNgcc.
No tests are added since the feature mainly exists already - ngcc supports
both parallel and serial execution. This commit only allows switching the
flag via the commandline.
PR Close#33192
These were getting included in the @angular/localize package.
Instead, patch the upstream files to work with TS typeRoots option
See bazelbuild/rules_nodejs#1033
PR Close#33226
Prior to this commit, metadata defined on ICU container element was not inherited by the ICU if the whole message is a single ICU (for example: `<ng-container i18n="meaning|description@@id">{count, select, ...}</ng-container>). This commit updates the logic to use parent container i18n meta information for the cases when a message consists of a single ICU.
Fixes#33171
PR Close#33191
LocaleID defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngLocaleIdDef to loc. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33212
Previously, when `ngcc` was reflecting on class members it did not
account for the fact that a member could be of the kind
`IndexSignature`. This can happen, for example, on abstract classes (as
is the case for [JsonCallbackContext][1]).
Trying to reflect on such members (and failing to recognize their kind),
resulted in warnings, such as:
```
Warning: Unknown member type: "[key: string]: (data: any) => void;
```
While these warnings are harmless, they can be confusing and worrisome
for users.
This commit avoids such warnings by detecting class members of the
`IndexSignature` kind and ignoring them.
[1]: https://github.com/angular/angular/blob/4659cc26e/packages/common/http/src/jsonp.ts#L39
PR Close#33198
Prior to this change, the template type checker would incorrectly bind
non-property bindings such as `[class.strong]`, `[style.color]` and
`[attr.enabled]` to directive inputs of the same name. This is
undesirable, as those bindings are never actually bound to the inputs at
runtime.
Fixes#32099Fixes#32496
Resolves FW-1596
PR Close#33130
Injectable defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngInjectableDef to "prov" (for "provider", since injector defs
are known as "inj"). This is because property names cannot
be minified by Uglify without turning on property mangling
(which most apps have turned off) and are thus size-sensitive.
PR Close#33151
Injector defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngInjectorDef to inj. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33151
The `legacyMessageIdFormat` is taken from the `i18nInFormat` property but we were only considering
`xmb`, `xlf` and `xlf2` values.
The CLI also supports `xliff` and `xliff2` values for the
`i18nInFormat`.
This commit adds support for those aliases.
PR Close#33160
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33142
Pipe defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngPipeDef to pipe. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33142
Factory defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngFactoryDef to fac. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngPipeDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33116
Prior to this change, a static attribute that corresponds with a
directive's input would not be type-checked against the type of the
input. This is unfortunate, as a static value always has type `string`,
whereas the directive's input type might be something different. This
typically occurs when a developer forgets to enclose the attribute name
in brackets to make it a property binding.
This commit lets static attributes be considered as bindings with string
values, so that they will be properly type-checked.
PR Close#33066
This commit introduces an internal config option of the template type
checker that allows to disable strict null checks of input bindings to
directives. This may be particularly useful when a directive is from a
library that is not compiled with `strictNullChecks` enabled.
Right now, strict null checks are enabled when `fullTemplateTypeCheck`
is turned on, and disabled when it's off. In the near future, several of
the internal configuration options will be added as public Angular
compiler options so that users can have fine-grained control over which
areas of the template type checker to enable, allowing for a more
incremental migration strategy.
PR Close#33066
Prior to this change, the template type checker would always allow a
value of type `undefined` to be passed into a directive's inputs, even
if the input's type did not allow for it. This was due to how the type
constructor for a directive was generated, where a `Partial` mapped
type was used to allow for inputs to be unset. This essentially
introduces the `undefined` type as acceptable type for all inputs.
This commit removes the `Partial` type from the type constructor, which
means that we can no longer omit any properties that were unset.
Instead, any properties that are not set will still be included in the
type constructor call, having their value assigned to `any`.
Before:
```typescript
class NgForOf<T> {
static ngTypeCtor<T>(init: Partial<Pick<NgForOf<T>,
'ngForOf'|'ngForTrackBy'|'ngForTemplate'>>): NgForOf<T>;
}
NgForOf.ngTypeCtor(init: {ngForOf: ['foo', 'bar']});
```
After:
```typescript
class NgForOf<T> {
static ngTypeCtor<T>(init: Pick<NgForOf<T>,
'ngForOf'|'ngForTrackBy'|'ngForTemplate'>): NgForOf<T>;
}
NgForOf.ngTypeCtor(init: {
ngForOf: ['foo', 'bar'],
ngForTrackBy: null as any,
ngForTemplate: null as any,
});
```
This change only affects generated type check code, the generated
runtime code is not affected.
Fixes#32690
Resolves FW-1606
PR Close#33066
Currently, method `getVarDeclarations()` does not try to resolve the type of
exported variable from *ngIf directive. It always returns `any` type.
By resolving the real type of exported variable, it is now possible to use this
type information in language service and provide completions, go to definition
and quick info functionality in expressions that use exported variable.
Also language service will provide more accurate diagnostic errors during
development.
PR Close#33016
Currently, the spans of expressions are recorded only relative to the
template node that they reside in, not their source file.
Introduce a `sourceSpan` property on expression ASTs that records the
location of an expression relative to the entire source code file that
it is in. This may allow for reducing duplication of effort in
ngtsc/typecheck/src/diagnostics later on as well.
Child of #31898
PR Close#31897
BREAKING CHANGE:
We no longer directly have a direct depedency on `tslib`. Instead it is now listed a `peerDependency`.
Users not using the CLI will need to manually install `tslib` via;
```
yarn add tslib
```
or
```
npm install tslib --save
```
PR Close#32167
Previously, the list of missing dependencies was not explicitly joined,
which resulted in the default `,` joiner being used during
stringification.
This commit explicitly joins the missing dependency lines to avoid
unnecessary commas.
Before:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
, - dependency 2
, - dependency 3
```
After:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
- dependency 2
- dependency 3
```
PR Close#33139
Previously, the executable for the Angular Compatibility Compiler
(`ngcc`) was called `ivy-ngcc`. This would be confusing for users not
familiar with our internal terminology, especially given that we call it
`ngcc` in all our docs and presentations.
This commit renames the executable to `ngcc` and replaces `ivy-ngcc`
with a script that errors with an informative message (prompting the
user to use `ngcc` instead).
Jira issue: [FW-1624](https://angular-team.atlassian.net/browse/FW-1624)
PR Close#33140
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33110
For elements in a template that look like custom elements, i.e.
containing a dash in their name, the template type checker will now
issue an error with instructions on how the resolve the issue.
Additionally, a property binding to a non-existent property will also
produce a more descriptive error message.
Resolves FW-1597
PR Close#33064
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33088
It is now possible to include a set of default ngcc configurations
that ship with ngcc out of the box. This allows ngcc to handle a
set of common packages, which are unlikely to be fixed, without
requiring the application developer to write their own configuration
for them.
Any packages that are configured at the package or project level
will override these default configurations. This allows a reasonable
level of control at the package and user level.
PR Close#33008
For v9 we want the migration to the new i18n to be as
simple as possible.
Previously the developer had to positively choose to use
legacy messsage id support in the case that their translation
files had not been migrated to the new format by setting the
`legacyMessageIdFormat` option in tsconfig.json to the format
of their translation files.
Now this setting has been changed to `enableI18nLegacyMessageFormat`
as is a boolean that defaults to `true`. The format is then read from
the `i18nInFormat` option, which was previously used to trigger translations
in the pre-ivy angular compiler.
PR Close#33053
Currently Ivy stores the element attributes into an array above the component def and passes it into the relevant instructions, however the problem is that upon minification the array will get a unique name which won't compress very well. These changes move the attributes array into the component def and pass in the index into the instructions instead.
Before:
```
const _c0 = ['foo', 'bar'];
SomeComp.ngComponentDef = defineComponent({
template: function() {
element(0, 'div', _c0);
}
});
```
After:
```
SomeComp.ngComponentDef = defineComponent({
consts: [['foo', 'bar']],
template: function() {
element(0, 'div', 0);
}
});
```
A couple of cases that this PR doesn't handle:
* Template references are still in a separate array.
* i18n attributes are still in a separate array.
PR Close#32798
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.
This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.
Going forward the developer should migrate their translation files
to use the new message id format.
PR Close#32937
This PR updates Angular to compile with TypeScript 3.6 while retaining
compatibility with TS3.5. We achieve this by inserting several `as any`
casts for compatiblity around `ts.CompilerHost` APIs.
PR Close#32908
In an attempt to be compatible with previous translation files
the Angular compiler was generating instructions that always
included the message id. This was because it was not possible
to accurately re-generate the id from the calls to `$localize()` alone.
In line with https://hackmd.io/EQF4_-atSXK4XWg8eAha2g this
commit changes the compiler so that it only renders ids if they are
"custom" ones provided by the template author.
NOTE:
When translating messages generated by the Angular compiler
from i18n tags in templates, the `$localize.translate()` function
will compute message ids, if no custom id is provided, using a
common digest function that only relies upon the information
available in the `$localize()` calls.
This computed message id will not be the same as the message
ids stored in legacy translation files. Such files will need to be
migrated to use the new common digest function.
This only affects developers who have been trialling `$localize`, have
been calling `loadTranslations()`, and are not exclusively using custom
ids in their templates.
PR Close#32867
Metadata blocks are delimited by colons. Previously the code naively just
looked for the next colon in the string as the end marker.
This commit supports escaping colons within the metadata content.
The Angular compiler has been updated to add escaping as required.
PR Close#32867
Previously the metadata and placeholder blocks were serialized in
a variety of places. Moreover the code for creating the `LocalizedString`
AST node was doing serialization, which break the separation of concerns.
Now this is all done by the code that renders the AST and is refactored into
helper functions to avoid repeating the behaviour.
PR Close#32867
With #31953 we moved the factories for components, directives and pipes into a new field called `ngFactoryDef`, however I decided not to do it for injectables, because they needed some extra logic. These changes set up the `ngFactoryDef` for injectables as well.
For reference, the extra logic mentioned above is that for injectables we have two code paths:
1. For injectables that don't configure how they should be instantiated, we create a `factory` that proxies to `ngFactoryDef`:
```
// Source
@Injectable()
class Service {}
// Output
class Service {
static ngInjectableDef = defineInjectable({
factory: () => Service.ngFactoryFn(),
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
2. For injectables that do configure how they're created, we keep the `ngFactoryDef` and generate the factory based on the metadata:
```
// Source
@Injectable({
useValue: DEFAULT_IMPL,
})
class Service {}
// Output
export class Service {
static ngInjectableDef = defineInjectable({
factory: () => DEFAULT_IMPL,
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
PR Close#32433
Recently ng-packagr was updated to include a transform that used to be
done in tsickle (https://github.com/ng-packagr/ng-packagr/pull/1401),
where only constructor parameter decorators are emitted in tsickle's
format, not any of the other decorators.
ngcc used to extract decorators from only a single format, so once it
saw the `ctorParameters` static property it assumed the library is using
the tsickle format. Therefore, none of the `__decorate` calls were
considered. This resulted in missing decorator information, preventing
proper processing of a package.
This commit changes how decorators are extracted by always looking at
both the static properties and the `__decorate` calls, merging these
sources appropriately.
Resolves FW-1573
PR Close#32901
ngcc may need to insert public exports into the bundle's source as well
as to the entry-point's declaration file, as the Ivy compiler may need
to create import statements to internal library types. The way ngcc
knows which exports to add is through the references registry, to which
references to things that require a public export are added by the
various analysis steps that are executed.
One of these analysis steps is the augmentation of declaration files
where functions that return `ModuleWithProviders` are updated so that a
generic type argument is added that corresponds with the `NgModule` that
is actually imported. This type has to be publicly exported, so the
analyzer step has to add the module type to the references registry.
A problem occurs when `ModuleWithProviders` already has a generic type
argument, in which case no update of the declaration file is necessary.
This may happen when 1) ngcc is processing additional bundle formats, so
that the declaration file has already been updated while processing the
first bundle format, or 2) when a package is processed which already
contains the generic type in its source. In both scenarios it may occur
that the referenced `NgModule` type does not yet have a public export,
so it is crucial that a reference to the type is added to the
references registry, which ngcc failed to do.
This commit fixes the issue by always adding the referenced `NgModule`
type to the references registry, so that a public export will always be
created if necessary.
Resolves FW-1575
PR Close#32902
Prior to this commit, the `ngProjectAs` attribute was only included with a special flag and in a parsed format. As a result, projected node was missing `ngProjectAs` attribute as well as other attributes added after `ngProjectAs` one. This is problematic since app code might rely on the presence of `ngProjectAs` attribute (for example in CSS). This commit fixes the problem by including `ngProjectAs` into attributes array as a regular attribute and also makes sure that the parsed version of the `ngProjectAs` attribute with a special marker is added after regular attributes (thus we set them correctly at runtime). This change also aligns View Engine and Ivy behavior.
PR Close#32784