When ngtsc generates a .ngfactory shim, it does so based on the contents of
an original file in the program. Occasionally these original files have
comments at the top which are load-bearing (e.g. they contain jsdoc
annotations which are significant to downstream bundling tools). The
generated factory shims should preserve this comment.
This commit adds a step to the ngfactory generator to preserve the top-level
comment from the original source file.
FW-1006 #resolve
FW-1095 #resolve
PR Close#29065
Prior to this change, keys in "inputs" and "outputs" objects generated by compiler were not checked against unsafe characters. As a result, in some cases the generated code was throwing JS error. Now we check whether a given key contains any unsafe chars and wrap it in quotes if needed.
PR Close#28919
The ngtsc partial evaluator previously would not handle an enum reference
inside a template string expression correctly. Enums are resolved to an
`EnumValue` type, which has a `resolved` property with the actual value.
When effectively toString-ing a `ResolvedValue` as part of visiting a
template expression, the partial evaluator needs to translate `EnumValue`s
to their fully resolved value, which this commit does.
PR Close#29062
Currently, ngtsc has a bug where if you alias the name of a decorator when
importing it, it won't be detected properly. This is because the compiler
uses the aliased name and not the original, declared name of the decorator
for detection.
This commit fixes the compiler to compare against the declared name of
decorators when available, and adds a test to prevent regression.
PR Close#29061
ngtsc has cyclic import detection, to determine when adding an import to a
directive or pipe would create a cycle. However, this detection must also
account for already inserted imports, as it's possible for both directions
of a circular import to be inserted by Ivy (as opposed to at least one of
those edges existing in the user's program).
This commit fixes the circular import detection for components to take into
consideration already added edges. This is difficult for one critical
reason: only edges to files which will *actually* be imported should be
considered. However, that depends on which directives & pipes are used in
a given template, which is currently only known by running the
TemplateDefinitionBuilder during the 'compile' phase. This is too late; the
decision whether to use remote scoping (which consults the import graph) is
made during the 'resolve' phase, before any compilation has taken place.
Thus, the only way to correctly consider synthetic edges is for the compiler
to know exactly which directives & pipes are used in a template during
'resolve'. There are two ways to achieve this:
1) refactor `TemplateDefinitionBuilder` to do its work in two phases, with
directive matching occurring as a separate step which can be performed
earlier.
2) use the `R3TargetBinder` in the 'resolve' phase to independently bind the
template and get information about used directives.
Option 1 is ideal, but option 2 is currently used for practical reasons. The
cost of binding the template can be shared with template-typechecking.
PR Close#29040
In the @Component decorator, the 'host' field is an object which represents
host bindings. The type of this field is complex, but is generally of the
form {[key: string]: string}. Several different kinds of bindings can be
specified, depending on the structure of the key.
For example:
```
@Component({
host: {'[prop]': 'someExpr'}
})
```
will bind an expression 'someExpr' to the property 'prop'. This is known to
be a property binding because of the square brackets in the binding key.
If the binding key is a plain string (no brackets or parentheses), then it
is known as an attribute binding. In this case, the right-hand side is not
interpreted as an expression, but is instead a constant string.
There is no actual requirement that at build time, these constant strings
are known to the compiler, but this was previously enforced as a side effect
of requiring the binding expressions for property and event bindings to be
statically known (as they need to be parsed). This commit breaks that
relationship and allows the attribute bindings to be dynamic. In the case
that they are dynamic, the references to the dynamic values are reflected
into the Ivy instructions for attribute bindings.
PR Close#29033
DynamicValues are generated whenever a partially evaluated expression is
unable to be resolved statically. They contain a reference to the ts.Node
which wasn't resolvable.
They can also be nested. For example, the expression 'a + b' is resolvable
only if 'a' and 'b' are themselves resolvable. If either 'a' or 'b' resolve
to a DynamicValue, the whole expression must also resolve to a DynamicValue.
Previously, if 'a' resolved to a DynamicValue, the entire expression might
have been resolved to the same DynamicValue. This correctly indicated that
the expression wasn't resolvable, but didn't return a reference to the
shallow node that couldn't be resolved (the expression 'a + b'), only a
reference to the deep node that couldn't be resolved ('a').
In certain situations, it's very useful to know the shallow unresolvable
node (for example, to use it verbatim in the output). To support this,
the partial evaluator is updated to always wrap DynamicValue to point to
each unresolvable expression as it's processed, ensuring the receiver can
determine exactly which expression node failed to resolve.
PR Close#29033
This change helps highlight certain misoptimizations with Closure
compiler. It is also stylistically preferable to consistently use index
access on index sig types.
Roughly, when one sees '.foo' they know it is always checked for typos
in the prop name by the type system (unless 'any'), while "['foo']" is
always not.
Once all angular repos are conforming this will become a tsetse.info
check, enforced by bazel.
PR Close#28937
Prior to this change, TypeScript stripped out some imports in case we reference a type that can be represented as a value (for ex. classes). This fix ensures that we use correct symbol identifier, which makes TypeScript retain the necessary import statements.
PR Close#28941
Angular supports using <style> and <link> tags inline in component
templates, but previously such tags were not implemented within the ngtsc
compiler. This commit introduces that support.
FW-1069 #resolve
PR Close#28997
Prior to this change i18n block bindings were converted to Expressions right away (once we first access them), when in non-i18n cases we processed them differently: the actual conversion happens at instructions generation. Because of this discrepancy, the output for bindings in i18n blocks was generated incorrectly (with invalid indicies in pipeBindN fns and invalid references to non-existent local variables). Now the bindings processing is unified and i18nExp instructions should contain right bind expressions.
PR Close#28969
This commit introduces support for the windows paths in the new concrete types mechanism that was introduced in this PR https://github.com/angular/angular/pull/28523
Normalized posix paths that start with either a `/` or `C:/` are considered to be an absolute path.
Note: `C:/` is used as a reference, as other drive letters are also supported.
Fixes#28754
PR Close#28752
Prior to this change, the logic that outputs i18n consts (like `const MSG_XXX = goog.getMsg(...)`) didn't have a check whether a given const that represent a certain i18n message was already included into the generated output. This commit adds the logic to mark corresponding i18n contexts after translation was generated, to avoid duplicate consts in the output.
PR Close#28967
The partial evaluator in ngtsc can handle a shorthand property declaration
in the middle evaluation, but fails if evaluation starts at the shorthand
property itself. This is because evaluation starts at the ts.Identifier
of the property (the ts.Expression representing it), not the ts.Declaration
for the property.
The fix for this is to detect in TypeScriptReflectionHost when a ts.Symbol
refers to a shorthand property, and to use the ts.TypeChecker method
getShorthandAssignmentValueSymbol() to resolve the value of the assignment
instead.
FW-1089 #resolve
PR Close#28936
In certain configurations (such as the g3 repository) which have lots of
small compilation units as well as strict dependency checking on generated
code, ngtsc's default strategy of directly importing directives/pipes into
components will not work. To handle these cases, an additional mode is
introduced, and is enabled when using the FileToModuleHost provided by such
compilation environments.
In this mode, when ngtsc encounters an NgModule which re-exports another
from a different file, it will re-export all the directives it contains at
the ES2015 level. The exports will have a predictable name based on the
FileToModuleHost. For example, if the host says that a directive Foo is
from the 'root/external/foo' module, ngtsc will add:
```
export {Foo as ɵng$root$external$foo$$Foo} from 'root/external/foo';
```
Consumers of the re-exported directive will then import it via this path
instead of directly from root/external/foo, preserving strict dependency
semantics.
PR Close#28852
This commit splits apart selector_scope.ts in ngtsc and extracts the logic
into two separate classes, the LocalModuleScopeRegistry and the
DtsModuleScopeResolver. The logic is cleaned up significantly and new tests
are added to verify behavior.
LocalModuleScopeRegistry implements the NgModule semantics for compilation
scopes, and handles NgModules declared in the current compilation unit.
DtsModuleScopeResolver implements simpler logic for export scopes and
handles NgModules declared in .d.ts files.
This is done in preparation for the addition of re-export logic to solve
StrictDeps issues.
PR Close#28852
Prior to this change presence of HTML comments inside <ng-content> caused compiler to throw an error that <ng-content> is not empty. Now HTML comments are not considered as a meaningful content, thus no error is thrown. This behavior is now aligned in Ivy/VE.
PR Close#28849
Prior to this change absolute file paths (like `/a/b/c/style.css`) were calculated taking current component file location into account. As a result, absolute file paths were calculated using current file as a root. This change updates this logic to ignore current file path in case of absolute paths.
PR Close#28789
Prior to this change, Ivy and VE CSS resource resolution was different: in addition to specified styleUrl (with .scss, .less and .styl extensions), VE also makes an attempt to resolve resource with .css extension. This change introduces similar logic for Ivy to make sure Ivy behavior is backwards compatible.
PR Close#28770
Prior to this change, the @fileoverview annotations added by users in source files or by tsickle during compilation might have change a location due to the fact that Ngtsc may prepend extra imports or constants. As a result, the output file is considered invalid by Closure (misplaced @fileoverview annotation). In order to resolve the problem we relocate @fileoverview annotation if we detect that its host node shifted.
PR Close#28723
This change is kind of similar to #27466, but instead of ensuring that
these shims can be generated, we also need to make sure that developers
are able to also use the factory shims like with `ngc`.
This issue is now surfacing because we have various old examples which
are now also built with `ngtsc` (due to the bazel migration). On case insensitive
platforms (e.g. windows) these examples cannot be built because ngtsc fails
the app imports a generated shim file (such as the factory shim files).
This is because the `GeneratedShimsHostWrapper` TypeScript host uses
the `getCanonicalFileName` method in order to check whether a given
file/module exists in the generator file maps. e.g.
```
// Generator Map:
'C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts' =>
'C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ts',
// Path passed into `fileExists`
C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts
// After getCanonicalFileName (notice the **lower-case drive name**)
c:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts
```
As seen above, the generator map does not use the canonical file names, as well as
TypeScript internally does not pass around canonical file names. We can fix this by removing
the manual call to `getCanonicalFileName` and just following TypeScript internal-semantics.
PR Close#28831
Fixes a minor typo in the `listLazyRoutes` method for `ngtsc`. Also in
addition fixes that a newly introduced test for `listLazyRoutes` broke the
tests in Windows. It's clear that we still don't run tests against
Windows, but we also made all other tests pass (without CI verification),
and it's not a big deal fixing this while being at it.
PR Close#28831
Prior to this fix, using the compiler's ivy_switch mechanism was
only available to core packages. This patch allows for this variable
switching mechanism to work across all other angular packages.
PR Close#28711
This commit adds support for the `static: true` flag in `ContentChild`
queries. Prior to this commit, all `ContentChild` queries were resolved
after change detection ran. This is a problem for backwards
compatibility because View Engine also supported "static" queries which
would resolve before change detection.
Now if users add a `static: true` option, the query will be resolved in
creation mode (before change detection runs). For example:
```ts
@ContentChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
This commit adds support for the `static: true` flag in
`ViewChild` queries. Prior to this commit, all `ViewChild`
queries were resolved after change detection ran. This is
a problem for backwards compatibility because View Engine
also supported "static" queries which would resolve before
change detection.
Now if users add a `static: true` option, the query will be
resolved in creation mode (before change detection runs).
For example:
```ts
@ViewChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
Currently if developers use call expressions in their static
class members ([like we do in Angular](https://github.com/angular/angular/blob/master/packages/core/src/change_detection/differs/keyvalue_differs.ts#L121)),
the metadata that is generated for flat modules is invalid. This
is because the metadata bundler logic currently does not handle
call expressions in static class members and the symbol references
are not rewritten to avoid relative paths in the bundle.
Static class members using a call expression are not relevant for
the ViewEngine AOT compilation, but it is problematic that the
bundled metadata references modules using their original relative
path. This means that the bundled metadata is no longer encapsulated
and depends on other emitted files to be emitted in the proper place.
These incorrect relative paths can now cause issues where NGC
looks for the referenced symbols in the incorrect path. e.g.
```
src/
| lib/
| index.ts -> References the call expression using `../../di`
```
Now the metadata looks like that:
```
node_modules/
| @angular/
-- | core/
-- -- | core.metadata.json -> Says that the call expr. is in `../../di`.
| di/
```
Now if NGC tries to use the metadata files and create the summary files,
NGC resolves the call expression to the `node_modules/di` module. Since
the "unexpected" module does not contain the desired symbol, NGC will
error out.
We should fix this by ensuring that we don't ship corrupted metadata
to NPM which contains relative references that can cause such
failures (other imports can be affected as well; it depends on what
modules the developer has installed and how we import our call
expressions).
Fixes#28741.
PR Close#28762
Currently setting `enableIvy` to true runs a hybrid mode of `ngc` and `ngtsc`. This is counterintuitive given the name of the flag itself.
This PR makes the `true` value equivalent to the previous `ngtsc`, and `ngtsc` becomes an alias for `true`. Effectively this removes the hybrid mode as well since there's no other way to enable it.
PR Close#28616
Previously, `ngtsc` detected class inheritance in a way that only worked
in TS or ES2015 code. As a result, inheritance would not be detected for
code in ES5 format, such as when running `ngtsc` through `ngcc` to
transform old-style Angular code to ivy format.
This commit fixes it by delegating class inheritance detection to the
current `ReflectionHost`, which is able to correctly interpret the used
code format.
PR Close#28773
Accounts for schemas in when validating properties in Ivy.
This PR resolves FW-819.
A couple of notes:
* I had to rework the test slightly, in order to have it fail when we expect it to. The one in master is passing since Ivy's validation runs during the update phase, rather than creation.
* I had to deviate from the design in FW-819 and not add an `enableSchema` instruction, because the schema is part of the `NgModule` scope, however the scope is only assigned to a component once all of the module's declarations have been resolved and some of them can be async. Instead, I opted to have the `schemas` on the component definition.
PR Close#28637
Since we build and publish the individual packages
using Bazel and `build.sh` has been removed, we can
safely remove the `rollup.config.js` files which are no
longer needed because the `ng_package` bazel rule
automatically handles the rollup settings and globals.
PR Close#28646
The ultimate goal of this commit is to make use of fileNameToModuleName to
get the module specifier to use when generating an import, when that API is
available in the CompilerHost that ngtsc is created with.
As part of getting there, the way in which ngtsc tracks references and
generates import module specifiers is refactored considerably. References
are tracked with the Reference class, and previously ngtsc had several
different kinds of Reference. An AbsoluteReference represented a declaration
which needed to be imported via an absolute module specifier tracked in the
AbsoluteReference, and a RelativeReference represented a declaration from
the local program, imported via relative path or referred to directly by
identifier if possible. Thus, how to refer to a particular declaration was
encoded into the Reference type _at the time of creation of the Reference_.
This commit refactors that logic and reduces Reference to a single class
with no subclasses. A Reference represents a node being referenced, plus
context about how the node was located. This context includes a
"bestGuessOwningModule", the compiler's best guess at which absolute
module specifier has defined this reference. For example, if the compiler
arrives at the declaration of CommonModule via an import to @angular/common,
then any references obtained from CommonModule (e.g. NgIf) will also be
considered to be owned by @angular/common.
A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface
are introduced. To produce an Expression referring to a given Reference'd
node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy
implementations.
Several different strategies are defined:
- LocalIdentifierStrategy: use local ts.Identifiers if available.
- AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule,
import the node via an absolute import from that module specifier.
- LogicalProjectStrategy: if the Reference is in the logical project
(is under the project rootDirs), import the node via a relative import.
- FileToModuleStrategy: use a FileToModuleHost to generate the module
specifier by which to import the node.
Depending on the availability of fileNameToModuleName in the CompilerHost,
then, a different collection of these strategies is used for compilation.
PR Close#28523
This commit introduces a new ngtsc sub-library, 'path', which contains
branded string types for the different kind of paths that ngtsc manipulates.
Having static types for these paths will reduce the number of path-related
bugs (especially on Windows) and will eliminate unnecessary defensive
normalizing.
See the README.md file for more detail.
PR Close#28523
Previously, ngtsc would throw an error if two decorators were matched on
the same class simultaneously. However, @Injectable is a special case, and
it appears frequently on component, directive, and pipe classes. For pipes
in particular, it's a common pattern to treat the pipe class also as an
injectable service.
ngtsc actually lacked the capability to compile multiple matching
decorators on a class, so this commit adds support for that. Decorator
handlers (and thus the decorators they match) are classified into three
categories: PRIMARY, SHARED, and WEAK.
PRIMARY handlers compile decorators that cannot coexist with other primary
decorators. The handlers for Component, Directive, Pipe, and NgModule are
marked as PRIMARY. A class may only have one decorator from this group.
SHARED handlers compile decorators that can coexist with others. Injectable
is the only decorator in this category, meaning it's valid to put an
@Injectable decorator on a previously decorated class.
WEAK handlers behave like SHARED, but are dropped if any non-WEAK handler
matches a class. The handler which compiles ngBaseDef is WEAK, since
ngBaseDef is only needed if a class doesn't otherwise have a decorator.
Tests are added to validate that @Injectable can coexist with the other
decorators and that an error is generated when mixing the primaries.
PR Close#28523
In the past, @Injectable had no side effects and existing Angular code is
therefore littered with @Injectable usage on classes which are not intended
to be injected.
A common example is:
@Injectable()
class Foo {
constructor(private notInjectable: string) {}
}
and somewhere else:
providers: [{provide: Foo, useFactory: ...})
Here, there is no need for Foo to be injectable - indeed, it's impossible
for the DI system to create an instance of it, as it has a non-injectable
constructor. The provider configures a factory for the DI system to be
able to create instances of Foo.
Adding @Injectable in Ivy signifies that the class's own constructor, and
not a provider, determines how the class will be created.
This commit adds logic to compile classes which are marked with @Injectable
but are otherwise not injectable, and create an ngInjectableDef field with
a factory function that throws an error. This way, existing code in the wild
continues to compile, but if someone attempts to use the injectable it will
fail with a useful error message.
In the case where strictInjectionParameters is set to true, a compile-time
error is thrown instead of the runtime error, as ngtsc has enough
information to determine when injection couldn't possibly be valid.
PR Close#28523
Translation of WriteKeyExpr expressions was not implemented in the ngtsc
expression translator. This resulted in binding expressions like
"target[key] = $event" not compiling.
This commit fixes the bug by implementing WriteKeyExpr translation.
PR Close#28523
Some applications use enum values in their host bindings:
@Component({
host: {
'[prop]': EnumType.Key,
}, ...
})
This commit changes the resolution of host properties to follow the enum
declaration and extract the correct value for the binding.
PR Close#28523
Testing of Ivy revealed two bugs in the AstMemoryEfficientTransformer
class, a part of existing View Engine compiler infrastructure that's
reused in Ivy. These bugs cause AST expressions not to be transformed
under certain circumstances.
The fix is simple, and tests are added to ensure the specific expression
forms that trigger the issue compile properly under Ivy.
PR Close#28523
Prior to this update we had separate contentQueries and contentQueriesRefresh functions to handle creation and update phases. This approach was inconsistent with View Queries, Host Bindings and Template functions that we generate for Component/Directive defs. Now the mentioned 2 functions are combines into one (contentQueries), creation and update logic is separated with RenderFlags (similar to what we have in other generated functions).
PR Close#28503
With #28594 we refactored the `@angular/compiler` slightly to
allow opting out from external symbol re-exports which are
enabled by default.
Since symbol re-exports only benefit projects which have a
very strict dependency enforcement, external symbols should
not be re-exported by default as this could grow the size of
factory files and cause unexpected behavior with Angular's
AOT symbol resolving (e.g. see: #25644).
Note that the common strict dependency enforcement for source
files does still work with external symbol re-exports disabled,
but there are also strict dependency checks that enforce strict
module dependencies also for _generated files_ (such as the
ngfactory files). This is how Google3 manages it's dependencies
and therefore external symbol re-exports need to be enabled within
Google3.
Also "ngtsc" also does not provide any way of using external symbol
re-exports, so this means that with this change, NGC can partially
match the behavior of "ngtsc" then (unless explicitly opted-out).
As mentioned before, internally at Google symbol re-exports need to
be still enabled, so the `ng_module` Bazel rule will enable the symbol
re-exports by default when running within Blaze.
Fixes#25644.
PR Close#28633
Previously, using a pipe in an input binding on an ng-template would
evaluate the pipe in the context of node that was processed before the
template. This caused the retrieval of e.g. ChangeDetectorRef to be
incorrect, resulting in one of the following bugs depending on the
template's structure:
1. If the template was at the root of a view, the previously processed
node would be the component's host node outside of the current view.
Accessing that node in the context of the current view results in a crash.
2. For templates not at the root, the ChangeDetectorRef injected into the
pipe would correspond with the previously processed node. If that node
hosts a component, the ChangeDetectorRef would not correspond with the
view that the ng-template is part of.
The solution to the above problem is two-fold:
1. Template compilation is adjusted such that the template instruction
is emitted before any instructions produced by input bindings, such as
pipes. This ensures that pipes are evaluated in the context of the
template's container node.
2. A ChangeDetectorRef can be requested for container nodes.
Fixes#28587
PR Close#27565