This is the final patch to migrate the Angular styling code to have a
smaller instruction set in preparation for the runtime refactor. All
styling-related instructions now work both in template and hostBindings
functions and do not use `element` as a prefix for their names:
BEFORE:
elementStyling()
elementStyleProp()
elementClassProp()
elementStyleMap()
elementClassMap()
elementStylingApply()
AFTER:
styling()
styleProp()
classProp()
styleMap()
classMap()
stylingApply()
PR Close#30318
This patch removes all host-specific styling instructions in favor of
using element-level instructions instead. Because of the previous
patches that made sure `select(n)` worked between styling calls, all
host level instructions are not needed anymore. This patch changes each
of those instruction calls to use any of the `elementStyling*`,
`elementStyle*` and `elementClass*` styling instructions instead.
PR Close#30336
Fixes `HostBinding` and `HostListener` declarations not being inherited from base classes that don't have an Angular decorator.
This PR resolves FW-1275.
PR Close#30158
Prior to this commit, the check that verifies correct "id" field type was too strict and didn't allow `module.id` as @NgModule's "id" field value. This change adds a special handling for `module.id` and uses it as id of @NgModule if specified.
PR Close#30040
This commit adds registration of AOT compiled NgModules that have 'id'
properties set in their metadata. Such modules have a call to
registerNgModuleType() emitted as part of compilation.
The JIT behavior of this code is already in place.
This is required for module loading systems (such as g3) which rely on
getModuleFactory().
PR Close#29980
Previously, ngtsc would fail to resolve `forwardRef` calls if they
contained additional parenthesis or casts. This commit changes the
behavior to first unwrap the AST nodes to see past such insignificant
nodes, resolving the issue.
Fixes#29639
PR Close#29886
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
So far using runtime i18n with ivy meant that you needed to use Closure and `goog.getMsg` (or a polyfill). This PR changes the compiler to output both closure & non-closure code, while the unused option will be tree-shaken by minifiers.
This means that if you use the Angular CLI with ivy and load a translations file, you can use i18n and the application will not throw at runtime.
For now it will not translate your application, but at least you can try ivy without having to remove all of your i18n code and configuration.
PR Close#28689
The defineInjector function specifies its providers and imports array to
be optional, so if no providers/imports are present these keys may be
omitted. This commit updates the compiler to only generate the keys when
necessary.
PR Close#29598
Prior to this change, a module's imports and exports would be used verbatim
as an injectors' imports. This is detrimental for tree-shaking, as a
module's exports could reference declarations that would then prevent such
declarations from being eligible for tree-shaking.
Since an injector actually only needs NgModule references as its imports,
we may safely filter out any declarations from the list of module exports.
This makes them eligible for tree-shaking once again.
PR Close#29598
Prior to this change, all module metadata would be included in the
`defineNgModule` call that is set as the `ngModuleDef` field of module
types. Part of the metadata is scope information like declarations,
imports and exports that is used for computing the transitive module
scope in JIT environments, preventing those references from being
tree-shaken for production builds.
This change moves the metadata for scope computations to a pure function
call that patches the scope references onto the module type. Because the
function is marked pure, it may be tree-shaken out during production builds
such that references to declarations and exports are dropped, which in turn
allows for tree-shaken any declaration that is not otherwise referenced.
Fixes#28077, FW-1035
PR Close#29598
Currently there is no support in ngtsc for imports of the form:
```
import * as core from `@angular/core`
export function forRoot(): core.ModuleWithProviders;
```
This commit modifies the `ReflectionHost.getImportOfIdentifier(id)`
method, so that it supports this kind of return type.
PR Close#27675
Currently, ngtsc decides to use remote scoping if the compilation of a
component may create a cyclic import. This happens if there are two
components in a scope (say, A and B) and A directly uses B. During
compilation of B ngtsc will then note that if B were to use A, a cycle would
be generated, and so it will opt to use remote scoping for B.
ngtsc already uses the R3TargetBinder to correctly track the imports that
are actually required, for future cycle tracking. This commit expands that
usage to not trigger remote scoping unless B actually does consume A in its
template.
PR Close#29404
Currently when building an Angular project with `ngtsc`
and `flatModuleOutFile` enabled, the Ngtsc build will fail
if there are multiple source files as root file names.
Ngtsc and NGC currently determine the entry-point for multiple
root file names by looking for files ending with `/index.ts`.
This functionality is technically deprecated, but still supported
and currently breaks on Windows as the root file names are not
guaranteed to be normalized POSIX-like paths.
In order to make this logic more reliable in the future, this commit
also switches the shim generators and entry-point logic to the branded
path types. This ensures that we don't break this in the future.
PR Close#29453
Previously, only directives and services with generic type parameters
would emit `any` as generic type when emitting Ivy metadata into .d.ts
files. Pipes can also have generic type parameters but did not emit
`any` for all type parameters, resulting in the omission of those
parameters which causes compilation errors.
This commit adds support for pipes with generic type arguments and emits
`any` as generic type in the Ivy metadata.
Fixes#29400
PR Close#29403
This patch is the first of a few patches which separates the
styling logic between template bindings (e.g. <div [style])
from host bindings (e.g. @HostBinding('style')). This patch
in particular introduces a series of host-specific styling
instructions and changes the existing set of template styling
instructions not to accept directives. The underyling code (which
communicates with the styling algorithm) still works as it did
before.
This PR also separates the styling instruction code into a separate
file and moves over all other instructions into an dedicated
instructions directory.
PR Close#29292
This fix is for a bug in the ngtsc PartialEvaluator, which statically
evaluates expressions.
Sometimes, evaluating a reference requires resolving a function which is
declared in another module, and thus no function body is available. To
support this case, the PartialEvaluator has the concept of a foreign
function resolver.
This allows the interpretation of expressions like:
const router = RouterModule.forRoot([]);
even though the definition of the 'forRoot' function has no body. In
ngtsc today, this will be resolved to a Reference to RouterModule itself,
via the ModuleWithProviders foreign function resolver.
However, the PartialEvaluator also associates any Identifiers in the path
of this resolution with the Reference. This is done so that if the user
writes
const x = imported.y;
'x' can be generated as a local identifier instead of adding an import for
'y'.
This was at the heart of a bug. In the above case with 'router', the
PartialEvaluator added the identifier 'router' to the Reference generated
(through FFR) to RouterModule.
This is not correct. References that result from FFR expressions may not
have the same value at runtime as they do at compile time (indeed, this is
not the case for ModuleWithProviders). The Reference generated via FFR is
"synthetic" in the sense that it's constructed based on a useful
interpretation of the code, not an accurate representation of the runtime
value. Therefore, it may not be legal to refer to the Reference via the
'router' identifier.
This commit adds the ability to mark such a Reference as 'synthetic', which
allows the PartialEvaluator to not add the 'router' identifier down the
line. Tests are included for both the PartialEvaluator itself as well as the
resultant buggy behavior in ngtsc overall.
PR Close#29387
Previously, ngtsc would resolve forward references while evaluating the
bootstrap, declaration, imports, and exports fields of NgModule types.
However, when generating the resulting ngModuleDef, the forward nature of
these references was not taken into consideration, and so the generated JS
code would incorrectly reference types not yet declared.
This commit fixes this issue by introducing function closures in the
NgModuleDef type, similarly to how NgComponentDef uses them for forward
declarations of its directives and pipes arrays. ngtsc will then generate
closures when required, and the runtime will unwrap them if present.
PR Close#29198
This fixes an issue with commit b6f6b117. In this commit, default imports
processed in a type-to-value conversion were recorded as non-local imports
with a '*' name, and the ImportManager generated a new default import for
them. When transpiled to ES2015 modules, this resulted in the following
correct code:
import i3 from './module';
// somewhere in the file, a value reference of i3:
{type: i3}
However, when the AST with this synthetic import and reference was
transpiled to non-ES2015 modules (for example, to commonjs) an issue
appeared:
var module_1 = require('./module');
{type: i3}
TypeScript renames the imported identifier from i3 to module_1, but doesn't
substitute later references to i3. This is because the import and reference
are both synthetic, and never went through the TypeScript AST step of
"binding" which associates the reference to its import. This association is
important during emit when the identifiers might change.
Synthetic (transformer-added) imports will never be bound properly. The only
possible solution is to reuse the user's original import and the identifier
from it, which will be properly downleveled. The issue with this approach
(which prompted the fix in b6f6b117) is that if the import is only used in a
type position, TypeScript will mark it for deletion in the generated JS,
even though additional non-type usages are added in the transformer. This
again would leave a dangling import.
To work around this, it's necessary for the compiler to keep track of
identifiers that it emits which came from default imports, and tell TS not
to remove those imports during transpilation. A `DefaultImportTracker` class
is implemented to perform this tracking. It implements a
`DefaultImportRecorder` interface, which is used to record two significant
pieces of information:
* when a WrappedNodeExpr is generated which refers to a default imported
value, the ts.Identifier is associated to the ts.ImportDeclaration via
the recorder.
* when that WrappedNodeExpr is later emitted as part of the statement /
expression translators, the fact that the ts.Identifier was used is
also recorded.
Combined, this tracking gives the `DefaultImportTracker` enough information
to implement another TS transformer, which can recognize default imports
which were used in the output of the Ivy transform and can prevent them
from being elided. This is done by creating a new ts.ImportDeclaration for
the imports with the same ts.ImportClause. A test verifies that this works.
PR Close#29266
Prior to this change default selector for Components was not applied in case selector is missing or defined as an empty string. This update aligns this behavior between Ivy and VE: now default selector is used for Components when it's needed. Directives with empty selector are not allowed and trigger a compile-time error in both Ivy and VE.
PR Close#29239
Prior to this change the code didn't take into account the fact that decorators can be aliases while importing into a script. As a result, these decorators were not recognized by Angular and various failures happened because of that. Now we take aliases into account and resolve decorator name properly.
PR Close#29195
ngsummary files were generated with an export for each class declaration.
However, some Angular code declares classes (class Foo) and exports them
(export {Foo}) separately, which was causing incomplete summary files.
This commit expands the set of symbol names for which summary exports will
be generated, fixing this issue.
PR Close#29193
This commit refactors and expands ngtsc's support for generating imports of
values from imports of types (this is used for example when importing a
class referenced in a type annotation in a constructor).
Previously, this logic handled "import {Foo} from" and "import * as foo
from" style imports, but failed on imports of default values ("import
Foo from"). This commit moves the type-to-value logic to a separate file and
expands it to cover the default import case. Doing this also required
augmenting the ImportManager to track default as well as non-default import
generation. The APIs were made a little cleaner at the same time.
PR Close#29146
Prior to this change, the RegExp that was used to check for dashes in field names used "g" (global) flag that retains lastIndex, which might result in skipping some fields that should be wrapped in quotes (since lastIndex advanced beyond the next "-" location). This commit removes this flag and updates the test to make sure there are no regressions.
PR Close#29126
ngtsc occasionally converts a type reference (such as the type of a
parameter in a constructor) to a value reference (argument to a
directiveInject call). TypeScript has a bad habit of sometimes removing
the import statement associated with this type reference, because it's a
type only import when it initially looks at the file.
A solution to this is to always add an import to refer to a type position
value that's imported, and not rely on the existing import.
PR Close#29111
When ngtsc generates a .ngfactory shim, it does so based on the contents of
an original file in the program. Occasionally these original files have
comments at the top which are load-bearing (e.g. they contain jsdoc
annotations which are significant to downstream bundling tools). The
generated factory shims should preserve this comment.
This commit adds a step to the ngfactory generator to preserve the top-level
comment from the original source file.
FW-1006 #resolve
FW-1095 #resolve
PR Close#29065
Prior to this change, keys in "inputs" and "outputs" objects generated by compiler were not checked against unsafe characters. As a result, in some cases the generated code was throwing JS error. Now we check whether a given key contains any unsafe chars and wrap it in quotes if needed.
PR Close#28919
Currently, ngtsc has a bug where if you alias the name of a decorator when
importing it, it won't be detected properly. This is because the compiler
uses the aliased name and not the original, declared name of the decorator
for detection.
This commit fixes the compiler to compare against the declared name of
decorators when available, and adds a test to prevent regression.
PR Close#29061
ngtsc has cyclic import detection, to determine when adding an import to a
directive or pipe would create a cycle. However, this detection must also
account for already inserted imports, as it's possible for both directions
of a circular import to be inserted by Ivy (as opposed to at least one of
those edges existing in the user's program).
This commit fixes the circular import detection for components to take into
consideration already added edges. This is difficult for one critical
reason: only edges to files which will *actually* be imported should be
considered. However, that depends on which directives & pipes are used in
a given template, which is currently only known by running the
TemplateDefinitionBuilder during the 'compile' phase. This is too late; the
decision whether to use remote scoping (which consults the import graph) is
made during the 'resolve' phase, before any compilation has taken place.
Thus, the only way to correctly consider synthetic edges is for the compiler
to know exactly which directives & pipes are used in a template during
'resolve'. There are two ways to achieve this:
1) refactor `TemplateDefinitionBuilder` to do its work in two phases, with
directive matching occurring as a separate step which can be performed
earlier.
2) use the `R3TargetBinder` in the 'resolve' phase to independently bind the
template and get information about used directives.
Option 1 is ideal, but option 2 is currently used for practical reasons. The
cost of binding the template can be shared with template-typechecking.
PR Close#29040
In the @Component decorator, the 'host' field is an object which represents
host bindings. The type of this field is complex, but is generally of the
form {[key: string]: string}. Several different kinds of bindings can be
specified, depending on the structure of the key.
For example:
```
@Component({
host: {'[prop]': 'someExpr'}
})
```
will bind an expression 'someExpr' to the property 'prop'. This is known to
be a property binding because of the square brackets in the binding key.
If the binding key is a plain string (no brackets or parentheses), then it
is known as an attribute binding. In this case, the right-hand side is not
interpreted as an expression, but is instead a constant string.
There is no actual requirement that at build time, these constant strings
are known to the compiler, but this was previously enforced as a side effect
of requiring the binding expressions for property and event bindings to be
statically known (as they need to be parsed). This commit breaks that
relationship and allows the attribute bindings to be dynamic. In the case
that they are dynamic, the references to the dynamic values are reflected
into the Ivy instructions for attribute bindings.
PR Close#29033
Prior to this change, TypeScript stripped out some imports in case we reference a type that can be represented as a value (for ex. classes). This fix ensures that we use correct symbol identifier, which makes TypeScript retain the necessary import statements.
PR Close#28941
Angular supports using <style> and <link> tags inline in component
templates, but previously such tags were not implemented within the ngtsc
compiler. This commit introduces that support.
FW-1069 #resolve
PR Close#28997
In certain configurations (such as the g3 repository) which have lots of
small compilation units as well as strict dependency checking on generated
code, ngtsc's default strategy of directly importing directives/pipes into
components will not work. To handle these cases, an additional mode is
introduced, and is enabled when using the FileToModuleHost provided by such
compilation environments.
In this mode, when ngtsc encounters an NgModule which re-exports another
from a different file, it will re-export all the directives it contains at
the ES2015 level. The exports will have a predictable name based on the
FileToModuleHost. For example, if the host says that a directive Foo is
from the 'root/external/foo' module, ngtsc will add:
```
export {Foo as ɵng$root$external$foo$$Foo} from 'root/external/foo';
```
Consumers of the re-exported directive will then import it via this path
instead of directly from root/external/foo, preserving strict dependency
semantics.
PR Close#28852
This commit splits apart selector_scope.ts in ngtsc and extracts the logic
into two separate classes, the LocalModuleScopeRegistry and the
DtsModuleScopeResolver. The logic is cleaned up significantly and new tests
are added to verify behavior.
LocalModuleScopeRegistry implements the NgModule semantics for compilation
scopes, and handles NgModules declared in the current compilation unit.
DtsModuleScopeResolver implements simpler logic for export scopes and
handles NgModules declared in .d.ts files.
This is done in preparation for the addition of re-export logic to solve
StrictDeps issues.
PR Close#28852
Prior to this change presence of HTML comments inside <ng-content> caused compiler to throw an error that <ng-content> is not empty. Now HTML comments are not considered as a meaningful content, thus no error is thrown. This behavior is now aligned in Ivy/VE.
PR Close#28849
Prior to this change absolute file paths (like `/a/b/c/style.css`) were calculated taking current component file location into account. As a result, absolute file paths were calculated using current file as a root. This change updates this logic to ignore current file path in case of absolute paths.
PR Close#28789
Prior to this change, Ivy and VE CSS resource resolution was different: in addition to specified styleUrl (with .scss, .less and .styl extensions), VE also makes an attempt to resolve resource with .css extension. This change introduces similar logic for Ivy to make sure Ivy behavior is backwards compatible.
PR Close#28770
Prior to this change, the @fileoverview annotations added by users in source files or by tsickle during compilation might have change a location due to the fact that Ngtsc may prepend extra imports or constants. As a result, the output file is considered invalid by Closure (misplaced @fileoverview annotation). In order to resolve the problem we relocate @fileoverview annotation if we detect that its host node shifted.
PR Close#28723
This change is kind of similar to #27466, but instead of ensuring that
these shims can be generated, we also need to make sure that developers
are able to also use the factory shims like with `ngc`.
This issue is now surfacing because we have various old examples which
are now also built with `ngtsc` (due to the bazel migration). On case insensitive
platforms (e.g. windows) these examples cannot be built because ngtsc fails
the app imports a generated shim file (such as the factory shim files).
This is because the `GeneratedShimsHostWrapper` TypeScript host uses
the `getCanonicalFileName` method in order to check whether a given
file/module exists in the generator file maps. e.g.
```
// Generator Map:
'C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts' =>
'C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ts',
// Path passed into `fileExists`
C:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts
// After getCanonicalFileName (notice the **lower-case drive name**)
c:/users/paul/_bazel_paul/lm3s4mgv/execroot/angular/packages/core/index.ngfactory.ts
```
As seen above, the generator map does not use the canonical file names, as well as
TypeScript internally does not pass around canonical file names. We can fix this by removing
the manual call to `getCanonicalFileName` and just following TypeScript internal-semantics.
PR Close#28831
Fixes a minor typo in the `listLazyRoutes` method for `ngtsc`. Also in
addition fixes that a newly introduced test for `listLazyRoutes` broke the
tests in Windows. It's clear that we still don't run tests against
Windows, but we also made all other tests pass (without CI verification),
and it's not a big deal fixing this while being at it.
PR Close#28831
Prior to this fix, using the compiler's ivy_switch mechanism was
only available to core packages. This patch allows for this variable
switching mechanism to work across all other angular packages.
PR Close#28711
This commit adds support for the `static: true` flag in
`ViewChild` queries. Prior to this commit, all `ViewChild`
queries were resolved after change detection ran. This is
a problem for backwards compatibility because View Engine
also supported "static" queries which would resolve before
change detection.
Now if users add a `static: true` option, the query will be
resolved in creation mode (before change detection runs).
For example:
```ts
@ViewChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
Previously, ngtsc would throw an error if two decorators were matched on
the same class simultaneously. However, @Injectable is a special case, and
it appears frequently on component, directive, and pipe classes. For pipes
in particular, it's a common pattern to treat the pipe class also as an
injectable service.
ngtsc actually lacked the capability to compile multiple matching
decorators on a class, so this commit adds support for that. Decorator
handlers (and thus the decorators they match) are classified into three
categories: PRIMARY, SHARED, and WEAK.
PRIMARY handlers compile decorators that cannot coexist with other primary
decorators. The handlers for Component, Directive, Pipe, and NgModule are
marked as PRIMARY. A class may only have one decorator from this group.
SHARED handlers compile decorators that can coexist with others. Injectable
is the only decorator in this category, meaning it's valid to put an
@Injectable decorator on a previously decorated class.
WEAK handlers behave like SHARED, but are dropped if any non-WEAK handler
matches a class. The handler which compiles ngBaseDef is WEAK, since
ngBaseDef is only needed if a class doesn't otherwise have a decorator.
Tests are added to validate that @Injectable can coexist with the other
decorators and that an error is generated when mixing the primaries.
PR Close#28523
In the past, @Injectable had no side effects and existing Angular code is
therefore littered with @Injectable usage on classes which are not intended
to be injected.
A common example is:
@Injectable()
class Foo {
constructor(private notInjectable: string) {}
}
and somewhere else:
providers: [{provide: Foo, useFactory: ...})
Here, there is no need for Foo to be injectable - indeed, it's impossible
for the DI system to create an instance of it, as it has a non-injectable
constructor. The provider configures a factory for the DI system to be
able to create instances of Foo.
Adding @Injectable in Ivy signifies that the class's own constructor, and
not a provider, determines how the class will be created.
This commit adds logic to compile classes which are marked with @Injectable
but are otherwise not injectable, and create an ngInjectableDef field with
a factory function that throws an error. This way, existing code in the wild
continues to compile, but if someone attempts to use the injectable it will
fail with a useful error message.
In the case where strictInjectionParameters is set to true, a compile-time
error is thrown instead of the runtime error, as ngtsc has enough
information to determine when injection couldn't possibly be valid.
PR Close#28523