24 Commits

Author SHA1 Message Date
Alex Rickabaugh
74edde0a94 perf(ivy): reuse prior analysis work during incremental builds (#34288)
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.

To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.

The new algorithm implemented by this commit is such:

1) Each incremental build starts with knowledge of the last known good
   dependency graph and analysis results from the last successful build,
   plus of course information about the set of files changed.

2) The previous dependency graph's information is used to determine the
   set of source files which have "logically" changed. A source file is
   considered logically changed if it or any of its dependencies have
   physically changed (on disk) since the last successful compilation. Any
   logically unchanged dependencies have their dependency information copied
   over to the new dependency graph.

3) During the `TraitCompiler`'s loop to consider all source files in the
   program, if a source file is logically unchanged then its previous
   analyses are "adopted" (and their 'register' steps are run). If the file
   is logically changed, then it is re-analyzed as usual.

4) Then, incremental build proceeds as before, with the new dependency graph
   being used to determine the set of files which require re-emitting.

This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.

Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.

PR Close #34288
2019-12-12 13:11:45 -08:00
Pete Bacon Darwin
e524322c43 refactor(compiler): i18n - render legacy i18n message ids (#34135)
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.

PR Close #34135
2019-12-03 10:15:53 -08:00
Andrew Kushnir
fc2f6b8456 fix(ivy): wrap functions from "providers" in parentheses in Closure mode (#33609)
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)

PR Close #33609
2019-11-20 14:58:35 -08:00
Pete Bacon Darwin
bcbf3e4123 feat(ivy): i18n - render legacy message ids in $localize if requested (#32937)
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.

This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.

Going forward the developer should migrate their translation files
to use the new message id format.

PR Close #32937
2019-10-03 12:12:55 -07:00
Pete Bacon Darwin
eb5412d76f fix(ivy): reuse compilation scope for incremental template changes. (#31932)
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.

Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.

The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.

Fixes #31654

PR Close #31932
2019-08-09 10:50:40 -07:00
Pete Bacon Darwin
7186f9c016 refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921)
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).

For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.

The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.

You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.

Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.

All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:

* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.

All ngcc and ngtsc source and tests now use this virtual file-system setup.

PR Close #30921
2019-06-25 16:25:24 -07:00
Pete Bacon Darwin
5887ddfa3c refactor(ivy): clean up ngtsc code (#30238)
No behavioural changes.

PR Close #30238
2019-05-10 12:10:40 -07:00
Alex Rickabaugh
cd1277cfb7 fix(ivy): include directive base class metadata when generating TCBs (#29698)
Previously the template type-checking code only considered the metadata of
directive classes actually referenced in the template. If those directives
had base classes, any inputs/outputs/etc of the base classes were not
tracked when generating the TCB. This resulted in bindings to those inputs
being incorrectly attributed to the host component or element.

This commit uses the new metadata package to follow directive inheritance
chains and use the full metadata for a directive for TCB generation.

Testing strategy: Template type-checking tests included.

PR Close #29698
2019-04-19 11:15:25 -07:00
Alex Rickabaugh
9277afce61 refactor(ivy): move metadata registration to its own package (#29698)
Previously, metadata registration (the recording of collected metadata
during analysis of directives, pipes, and NgModules) was only used to
produce the `LocalModuleScope`, and thus was handled by the
`LocalModuleScopeRegistry`.

However, the template type-checker also needs information about registered
directives, outside of the NgModule scope determinations. Rather than
reuse the scope registry for an unintended purpose, this commit introduces
new abstractions for metadata registration and lookups in a separate
'metadata' package, which the scope registry implements.

This paves the way for a future commit to make use of this metadata for the
template type-checking system.

Testing strategy: this commit is a refactoring which introduces no new
functionality, so existing tests are sufficient.

PR Close #29698
2019-04-19 11:15:25 -07:00
George Kalpakas
2790352d04 refactor(ivy): use ClassDeclaration in more ReflectionHost methods (#29209)
PR Close #29209
2019-03-21 22:20:23 +00:00
George Kalpakas
bb6a3632f6 refactor(ivy): correctly type class declarations in ngtsc/ngcc (#29209)
Previously, several `ngtsc` and `ngcc` APIs dealing with class
declaration nodes used inconsistent types. For example, some methods of
the `DecoratorHandler` interface expected a `ts.Declaration` argument,
but actual `DecoratorHandler` implementations specified a stricter
`ts.ClassDeclaration` type.

As a result, the stricter methods would operate under the incorrect
assumption that their arguments were of type `ts.ClassDeclaration`,
while the actual arguments might be of different types (e.g. `ngcc`
would call them with `ts.FunctionDeclaration` or
`ts.VariableDeclaration` arguments, when compiling ES5 code).

Additionally, since we need those class declarations to be referenced in
other parts of the program, `ngtsc`/`ngcc` had to either repeatedly
check for `ts.isIdentifier(node.name)` or assume there was a `name`
identifier and use `node.name!`. While this assumption happens to be
true in the current implementation, working around type-checking is
error-prone (e.g. the assumption might stop being true in the future).

This commit fixes this by introducing a new type to be used for such
class declarations (`ts.Declaration & {name: ts.Identifier}`) and using
it consistently throughput the code.

PR Close #29209
2019-03-21 22:20:23 +00:00
Alex Rickabaugh
ccb70e1c64 fix(ivy): reuse default imports in type-to-value references (#29266)
This fixes an issue with commit b6f6b117. In this commit, default imports
processed in a type-to-value conversion were recorded as non-local imports
with a '*' name, and the ImportManager generated a new default import for
them. When transpiled to ES2015 modules, this resulted in the following
correct code:

import i3 from './module';

// somewhere in the file, a value reference of i3:
{type: i3}

However, when the AST with this synthetic import and reference was
transpiled to non-ES2015 modules (for example, to commonjs) an issue
appeared:

var module_1 = require('./module');
{type: i3}

TypeScript renames the imported identifier from i3 to module_1, but doesn't
substitute later references to i3. This is because the import and reference
are both synthetic, and never went through the TypeScript AST step of
"binding" which associates the reference to its import. This association is
important during emit when the identifiers might change.

Synthetic (transformer-added) imports will never be bound properly. The only
possible solution is to reuse the user's original import and the identifier
from it, which will be properly downleveled. The issue with this approach
(which prompted the fix in b6f6b117) is that if the import is only used in a
type position, TypeScript will mark it for deletion in the generated JS,
even though additional non-type usages are added in the transformer. This
again would leave a dangling import.

To work around this, it's necessary for the compiler to keep track of
identifiers that it emits which came from default imports, and tell TS not
to remove those imports during transpilation. A `DefaultImportTracker` class
is implemented to perform this tracking. It implements a
`DefaultImportRecorder` interface, which is used to record two significant
pieces of information:

* when a WrappedNodeExpr is generated which refers to a default imported
  value, the ts.Identifier is associated to the ts.ImportDeclaration via
  the recorder.
* when that WrappedNodeExpr is later emitted as part of the statement /
  expression translators, the fact that the ts.Identifier was used is
  also recorded.

Combined, this tracking gives the `DefaultImportTracker` enough information
to implement another TS transformer, which can recognize default imports
which were used in the output of the Ivy transform and can prevent them
from being elided. This is done by creating a new ts.ImportDeclaration for
the imports with the same ts.ImportClause. A test verifies that this works.

PR Close #29266
2019-03-12 18:02:08 -07:00
Alex Rickabaugh
c1392ce618 feat(ivy): produce and consume ES2015 re-exports for NgModule re-exports (#28852)
In certain configurations (such as the g3 repository) which have lots of
small compilation units as well as strict dependency checking on generated
code, ngtsc's default strategy of directly importing directives/pipes into
components will not work. To handle these cases, an additional mode is
introduced, and is enabled when using the FileToModuleHost provided by such
compilation environments.

In this mode, when ngtsc encounters an NgModule which re-exports another
from a different file, it will re-export all the directives it contains at
the ES2015 level. The exports will have a predictable name based on the
FileToModuleHost. For example, if the host says that a directive Foo is
from the 'root/external/foo' module, ngtsc will add:

```
export {Foo as ɵng$root$external$foo$$Foo} from 'root/external/foo';
```

Consumers of the re-exported directive will then import it via this path
instead of directly from root/external/foo, preserving strict dependency
semantics.

PR Close #28852
2019-02-22 12:15:58 -08:00
Alex Rickabaugh
15c065f9a0 refactor(ivy): extract selector scope logic to a new ngtsc package (#28852)
This commit splits apart selector_scope.ts in ngtsc and extracts the logic
into two separate classes, the LocalModuleScopeRegistry and the
DtsModuleScopeResolver. The logic is cleaned up significantly and new tests
are added to verify behavior.

LocalModuleScopeRegistry implements the NgModule semantics for compilation
scopes, and handles NgModules declared in the current compilation unit.
DtsModuleScopeResolver implements simpler logic for export scopes and
handles NgModules declared in .d.ts files.

This is done in preparation for the addition of re-export logic to solve
StrictDeps issues.

PR Close #28852
2019-02-22 12:15:58 -08:00
Alex Rickabaugh
423b39e216 feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523)
The ultimate goal of this commit is to make use of fileNameToModuleName to
get the module specifier to use when generating an import, when that API is
available in the CompilerHost that ngtsc is created with.

As part of getting there, the way in which ngtsc tracks references and
generates import module specifiers is refactored considerably. References
are tracked with the Reference class, and previously ngtsc had several
different kinds of Reference. An AbsoluteReference represented a declaration
which needed to be imported via an absolute module specifier tracked in the
AbsoluteReference, and a RelativeReference represented a declaration from
the local program, imported via relative path or referred to directly by
identifier if possible. Thus, how to refer to a particular declaration was
encoded into the Reference type _at the time of creation of the Reference_.

This commit refactors that logic and reduces Reference to a single class
with no subclasses. A Reference represents a node being referenced, plus
context about how the node was located. This context includes a
"bestGuessOwningModule", the compiler's best guess at which absolute
module specifier has defined this reference. For example, if the compiler
arrives at the declaration of CommonModule via an import to @angular/common,
then any references obtained from CommonModule (e.g. NgIf) will also be
considered to be owned by @angular/common.

A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface
are introduced. To produce an Expression referring to a given Reference'd
node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy
implementations.

Several different strategies are defined:

- LocalIdentifierStrategy: use local ts.Identifiers if available.
- AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule,
  import the node via an absolute import from that module specifier.
- LogicalProjectStrategy: if the Reference is in the logical project
  (is under the project rootDirs), import the node via a relative import.
- FileToModuleStrategy: use a FileToModuleHost to generate the module
  specifier by which to import the node.

Depending on the availability of fileNameToModuleName in the CompilerHost,
then, a different collection of these strategies is used for compilation.

PR Close #28523
2019-02-13 19:13:11 -08:00
Alex Rickabaugh
99d8582882 feat(ivy): support @Injectable on already decorated classes (#28523)
Previously, ngtsc would throw an error if two decorators were matched on
the same class simultaneously. However, @Injectable is a special case, and
it appears frequently on component, directive, and pipe classes. For pipes
in particular, it's a common pattern to treat the pipe class also as an
injectable service.

ngtsc actually lacked the capability to compile multiple matching
decorators on a class, so this commit adds support for that. Decorator
handlers (and thus the decorators they match) are classified into three
categories: PRIMARY, SHARED, and WEAK.

PRIMARY handlers compile decorators that cannot coexist with other primary
decorators. The handlers for Component, Directive, Pipe, and NgModule are
marked as PRIMARY. A class may only have one decorator from this group.

SHARED handlers compile decorators that can coexist with others. Injectable
is the only decorator in this category, meaning it's valid to put an
@Injectable decorator on a previously decorated class.

WEAK handlers behave like SHARED, but are dropped if any non-WEAK handler
matches a class. The handler which compiles ngBaseDef is WEAK, since
ngBaseDef is only needed if a class doesn't otherwise have a decorator.

Tests are added to validate that @Injectable can coexist with the other
decorators and that an error is generated when mixing the primaries.

PR Close #28523
2019-02-13 19:13:10 -08:00
Alex Rickabaugh
7d954dffd0 feat(ivy): detect cycles and use remote scoping of components if needed (#28169)
By its nature, Ivy alters the import graph of a TS program, adding imports
where template dependencies exist. For example, if ComponentA uses PipeB
in its template, Ivy will insert an import of PipeB into the file in which
ComponentA is declared.

Any insertion of an import into a program has the potential to introduce a
cycle into the import graph. If for some reason the file in which PipeB is
declared imports the file in which ComponentA is declared (maybe it makes
use of a service or utility function that happens to be in the same file as
ComponentA) then this could create an import cycle. This turns out to
happen quite regularly in larger Angular codebases.

TypeScript and the Ivy runtime have no issues with such cycles. However,
other tools are not so accepting. In particular the Closure Compiler is
very anti-cycle.

To mitigate this problem, it's necessary to detect when the insertion of
an import would create a cycle. ngtsc can then use a different strategy,
known as "remote scoping", instead of directly writing a reference from
one component to another. Under remote scoping, a function
'setComponentScope' is called after the declaration of the component's
module, which does not require the addition of new imports.

FW-647 #resolve

PR Close #28169
2019-01-28 12:10:25 -08:00
Pete Bacon Darwin
73dcd72afb refactor(ivy): expose resolving URLs in the ResourceLoader (#28199)
Resources can be loaded in the context of another file, which
means that the path to the resource file must be resolved
before it can be loaded.

Previously the API of this interface did not allow the client
code to get access to the resolved URL which is used to load
the resource.

Now this API has been refactored so that you must do the
resource URL resolving first and the loading expects a
resolved URL.

PR Close #28199
2019-01-18 11:03:53 -08:00
Alex Rickabaugh
1c39ad38d3 feat(ivy): reference external classes by their exported name (#27743)
Previously, ngtsc would assume that a given directive/pipe being imported
from an external package was importable using the same name by which it
was declared. This isn't always true; sometimes a package will export a
directive under a different name. For example, Angular frequently prefixes
directive names with the 'ɵ' character to indicate that they're part of
the package's private API, and not for public consumption.

This commit introduces the TsReferenceResolver class which, given a
declaration to import and a module name to import it from, can determine
the exported name of the declared class within the module. This allows
ngtsc to pick the correct name by which to import the class instead of
making assumptions about how it was exported.

This resolver is used to select a correct symbol name when creating an
AbsoluteReference.

FW-517 #resolve
FW-536 #resolve

PR Close #27743
2019-01-08 16:36:18 -08:00
Alex Rickabaugh
2a6108af97 refactor(ivy): split apart the 'metadata' package in the ngtsc compiler (#27743)
This refactoring moves code around between a few of the ngtsc subpackages,
with the goal of having a more logical package structure. Additional
interfaces are also introduced where they make sense.

The 'metadata' package formerly contained both the partial evaluator,
the TypeScriptReflectionHost as well as some other reflection functions,
and the Reference interface and various implementations. This package
was split into 3 parts.

The partial evaluator now has its own package 'partial_evaluator', and
exists behind an interface PartialEvaluator instead of a top-level
function. In the future this will be useful for reducing churn as the
partial evaluator becomes more complicated.

The TypeScriptReflectionHost and other miscellaneous functions have moved
into a new 'reflection' package. The former 'host' package which contained
the ReflectionHost interface and associated types was also merged into this
new 'reflection' package.

Finally, the Reference APIs were moved to the 'imports' package, which will
consolidate all import-related logic in ngtsc.

PR Close #27743
2019-01-08 16:36:18 -08:00
Andrew Kushnir
aedc343003 feat(ivy): updated translation const names (that include message ids) (#27185)
PR Close #27185
2018-11-30 10:00:54 -08:00
Andrew Kushnir
d819c00fee fix(ivy): take preserveWhitespaces config option into account (FW-650) (#27197)
PR Close #27197
2018-11-28 11:41:49 -08:00
Alex Rickabaugh
cc29b9cf93 fix(ivy): use globally unique names for i18n constants (#25689)
Closure compiler requires that the i18n message constants of the form

const MSG_XYZ = goog.getMessage('...');

have names that are unique across an entire compilation, even if the
variables themselves are local to a given module. This means that in
practice these names must be unique in a codebase.

The best way to guarantee this requirement is met is to encode the
relative file name of the file into which the constant is being written
into the constant name itself. This commit implements that solution.

PR Close #25689
2018-09-04 12:09:29 -07:00
Alex Rickabaugh
38f624d7e3 feat(ivy): output diagnostics for many errors in ngtsc (#25647)
This commit takes the first steps towards ngtsc producing real
TypeScript diagnostics instead of simply throwing errors when
encountering incorrect code.

A new class is introduced, FatalDiagnosticError, which can be thrown by
handlers whenever a condition in the code is encountered which by
necessity prevents the class from being compiled. This error type is
convertable to a ts.Diagnostic which represents the type and source of
the error.

Error codes are introduced for Angular errors, and are prefixed with -99
(so error code 1001 becomes -991001) to distinguish them from other TS
errors.

A function is provided which will read TS diagnostic output and convert
the TS errors to NG errors if they match this negative error code
format.

PR Close #25647
2018-08-31 09:43:30 -07:00