When ngtsc encounters a reference to a type (for example, a Component
type listed in an NgModule declarations array), it traces the import
of that type and attempts to determine the best way to refer to it.
In the event the type is defined in the same file where a reference
is being generated, the identifier of the type is used. If the type
was imported, ngtsc has a choice. It can use the identifier from the
original import, or it can write a new import to the module where the
type came from.
ngtsc has a bug currently when it elects to rely on the user's import.
When writing a .d.ts file, the user's import may have been elided as
the type was not referred to from the type side of the program. Thus,
in .d.ts files ngtsc must always assume the import may not exist, and
generate a new one.
In .js output the import is guaranteed to still exist, so it's
preferable for ngtsc to continue using the existing import if one is
available.
This commit changes how @angular/compiler writes type definitions, and
allows it to use a different expression to write a type definition than
is used to write the value. This allows ngtsc to specify that types in
type definitions should always be imported. A corresponding change to
the staticallyResolve() Reference system allows the choice of which
type of import to use when generating an Expression from a Reference.
PR Close#25080
Fixes#25018.
Instantiating a NgModuleRef from NgModuleFactory reuses the NgModuleDefinition if it is already present. However the NgModuleDefinition has a providers array which modified when tree shakable providers are instantiated. This corrupts the provider definitions the next time the same factory is used to create a new NgModuleRef - Two provider definitions can end up with the same index anf the injector could potentially return a completely wrong object for a provider token.
This scenario is more likely on the server where the same NgModuleFactory is reused across requests.
The fix clones the cached NgModuleDefinition so that any tree shakable providers added later do not affect the cached copy.
PR Close#25022
Ivy definition types have a generic type which specifies the return
type of the factory function. For example:
static ngDirectiveDef<NgForOf, '[ngFor][ngForOf]'>
However, in this case NgForOf itself has a type parameter <T>. Thus,
writing the above is incorrect.
This commit modifies ngtsc to understand the genericness of NgForOf and
to write the following:
static ngDirectiveDef<NgForOf<any>, '[ngFor][ngForOf]'>
PR Close#24862
Previously ngtsc would use a tuple of class types for listing metadata
in .d.ts files. For example, an @NgModule's declarations might be
represented with the type:
[NgIf, NgForOf, NgClass]
If the module had no declarations, an empty tuple [] would be produced.
This has two problems.
1. If the class type has generic type parameters, TypeScript will
complain that they're not provided.
2. The empty tuple type is not actually legal.
This commit addresses both problems.
1. Class types are now represented using the `typeof` operator, so the
above declarations would be represented as:
[typeof NgIf, typeof NgForOf, typeof NgClass].
Since typeof operates on a value, it doesn't require generic type
arguments.
2. Instead of an empty tuple, `never` is used to indicate no metadata.
PR Close#24862
Previously, some of the *Def symbols were not exported or were exported
as public API. This commit ensures every definition type is in the
private export namespace.
PR Close#24862
ngInjectorDef.imports is generated from @NgModule.imports plus
@NgModule.exports. A problem arises as a result, because @NgModule
exports contain not only other modules (which will have ngInjectorDef
fields), but components, directives, and pipes as well. Because of
locality, it's difficult for the compiler to filter these out at
build time.
It's not impossible, but for now filtering them out at runtime will
allow testing of the compiler against complex applications.
PR Close#24862
Within an @NgModule it's common to include in the imports a call to
a ModuleWithProviders function, for example RouterModule.forRoot().
The old ngc compiler was able to handle this pattern because it had
global knowledge of metadata of not only the input compilation unit
but also all dependencies.
The ngtsc compiler for Ivy doesn't have this knowledge, so the
pattern of ModuleWithProviders functions is more difficult. ngtsc
must be able to determine which module is imported via the function
in order to expand the selector scope and properly tree-shake
directives and pipes.
This commit implements a solution to this problem, by adding a type
parameter to ModuleWithProviders through which the actual module
type can be passed between compilation units.
The provider side isn't a problem because the imports are always
copied directly to the ngInjectorDef.
PR Close#24862
On accident a few of the definition types were emitted as public API
symbols. Much of the Ivy API surface is still prefixed with ɵ,
indicating it's a private API. The definition types should be private
for now.
PR Close#24738
Tree shakable providers use the APP_ROOT token to determine where to attach themselves. APP_ROOT gets set on NgModule with BrowserModule irrespective of whether it is actually the root(Ex. in case of SSR app where the shell app is first bootstrapped without BrowserModule being the root module).
This change allows a NgModule with BrowserModule to explicitly mark itself as not the root by setting APP_ROOT token to false. This allows tree shakable providers to be attached to the right rott module.
PR Close#24814
With these changes, the types are a little stricter now and also not
compatible with Protractor's jasmine-like syntax. So, we have to also
use `@types/jasminewd2` for e2e tests (but not for non-e2e tests).
I also had to "augment" `@types/jasminewd2`, because the latest
typings from [DefinitelyTyped][1] do not reflect the fact that the
`jasminewd2` version (v2.1.0) currently used by Protractor supports
passing a `done` callback to a spec.
[1]: 566e039485/types/jasminewd2/index.d.ts (L9-L15)Fixes#23952Closes#24733
PR Close#19904
This updates the r3_pipe_compiler to not depend on global analysis,
and to produce ngPipeDef instructions in the same way that the other
compilers do. It's a precursor to JIT and AOT implementations of
@Pipe compilation.
PR Close#24703
This propagates other custom equality testers added by users. Additionally, if
an Angular project is using jasmine 2.6+, it will allow Jasmine's custom object
differ to print out pretty test error messages.
fixes#22939
PR Close#22983
- Adds InheritanceDefinitionFeature to ivy
- Ensures that lifecycle hooks are inherited from super classes whether they are defined as directives or not
- Directives cannot inherit from Components
- Components can inherit from Directives or Components
- Ensures that Inputs, Outputs, and Host Bindings are inherited
- Ensures that super class Features are run
PR Close#24570
Used to resolve resource URLs on `@Component` when used with JIT compilation.
```
@Component({
selector: 'my-comp',
templateUrl: 'my-comp.html', // This requires asynchronous resolution
})
class MyComponnent{
}
// Calling `renderComponent` will fail because `MyComponent`'s `@Compenent.templateUrl`
// needs to be resolved because `renderComponent` is synchronous process.
// renderComponent(MyComponent);
// Calling `resolveComponentResources` will resolve `@Compenent.templateUrl` into
// `@Compenent.template`, which would allow `renderComponent` to proceed in synchronous manner.
// Use browser's `fetch` function as the default resource resolution strategy.
resolveComponentResources(fetch).then(() => {
// After resolution all URLs have been converted into strings.
renderComponent(MyComponent);
});
```
PR Close#24637
Previously the todo app imported reflect-metadata, since it is a dependency
of JIT and the todo app tests run in both JIT and AOT modes. However, the
code doesn't get tree-shaken away in AOT mode.
This change adds a target //packages/core/test/bundling/util:reflect_metadata
which, depending on whether the compile flag is in JIT or AOT mode, either
includes reflect-metadata or is a no-op.
Not including reflect-metadata gets the compressed todo bundle down to 12.5 kB.
PR Close#24677
ngtsc is sufficiently capable now that it can compile hello_world
and todo and achieve equivalent results to ngc in ivy (global) mode.
Bundle sizes:
hello_world - 3.0 kB
todo - 14.7 kB
PR Close#24677
This change makes @angular/compiler more tree-shakeable by changing
an enum to a const enum and by getting rid of a top-level map that
the tree-shaker was seeing as a reference which caused r3_identifiers
to be retained.
This drops a few hundred bytes of JS from tree-shaken ngtsc compiled
apps.
PR Close#24677
Previously the repo was depending on an old version of build optimizer.
This change updates to the latest (an RC release in the CLI package).
Additionally, this changes the behavior of ng_rollup_bundle to apply
the optimizer to ngtsc compiled code, and configures it to treat the
@angular/compiler package as side-effect-free.
This results in a substantial size reduction of ngtsc compiled code.
PR Close#24677
@angular/core is unique in that it defines the Angular decorators
(@Component, @Directive, etc). Ordinarily ngtsc looks for imports
from @angular/core in order to identify these decorators. Clearly
within core itself, this strategy doesn't work.
Instead, a special constant ITS_JUST_ANGULAR is declared within a
known file in @angular/core. If ngtsc sees this constant it knows
core is being compiled and can ignore the imports when evaluating
decorators.
Additionally, when compiling decorators ngtsc will often write an
import to @angular/core for needed symbols. However @angular/core
cannot import itself. This change creates a module within core to
export all the symbols needed to compile it and adds intelligence
within ngtsc to write relative imports to that module, instead of
absolute imports to @angular/core.
PR Close#24677