Previously, a bad baseUrl or path mapping passed to an `EntryPointFinder`
could cause the original `sourceDirectory` to be superceded by a higher
directory. This could result in none of the sourceDirectory entry-points being
processed.
Now missing basePaths computed from path-mappings are discarded with
a warning. Further, if the `baseUrl` is the root directory then a warning is
given as this is most likely an error in the tsconfig.json.
Resolves#36313Resolves#36283
PR Close#36331
The previous optimizations in #35756 to the
`DirectoryWalkerEntryPointFinder` were over zealous
with regard to packages that have entry-points stored
in "container" directories in the package, where the
container directory was not an entry-point itself.
Now we will also walk such "container" folders as long
as they do not contain `.js` files, which we regard as an
indicator that the directory will not contain entry-points.
Fixes#36216
PR Close#36305
This commit simplifies the `DirectoryWalkerEntryPointFinder` inter-method
calling to make it easier to follow, and also to support controlling
walking of a directory based on its children.
PR Close#36305
Previously we only searched for package paths below the set of `basePaths`
that were computed from the `basePath` provided to ngcc and the set of
`pathMappings`.
In some scenarios, such as hoisted packages, the entry-point is not within
any of the `basePaths` identified above. For example:
```
project
packages
app
node_modules
app-lib (depends on lib1)
node_modules
lib1 (depends on lib2)
node_modules
lib2 (depends on lib3/entry-point)
lib3
entry-point
```
When CLI is compiling `app-lib` ngcc will be given
`project/packages/app/node_modules` as the `basePath.
If ngcc is asked to target `lib2`, the `targetPath` will be
`project/node_modules/lib1/node_modules/lib2`.
Since `lib2` depends upon `lib3/entry-point`, ngcc will need to compute
the package path for `project/node_modules/lib3/entry-point`.
Since `project/node_modules/lib3/entry-point` is not contained in the `basePath`
`project/packages/app/node_modules`, ngcc failed to compute the `packagePath`
correctly, instead assuming that it was the same as the entry-point path.
Now we also consider the nearest `node_modules` folder to the entry-point
path as an additional `basePath`. If one is found then we use the first
directory directly below that `node_modules` directory as the package path.
In the case of our example this extra `basePath` would be `project/node_modules`
which allows us to compute the `packagePath` of `project/node_modules/lib3`.
Fixes#35747
PR Close#36249
Previously ngcc never preserved whitespaces but this is at odds
with how the ViewEngine compiler works. In ViewEngine, library
templates are recompiled with the current application's tsconfig
settings, which meant that whitespace preservation could be set
in the application tsconfig file.
This commit allows ngcc to use the `preserveWhitespaces` setting
from tsconfig when compiling library templates. One should be aware
that this disallows different projects with different tsconfig settings
to share the same node_modules folder, with regard to whitespace
preservation. But this is already the case in the current ngcc since
this configuration is hard coded right now.
Fixes#35871
PR Close#36189
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:
1. If the associated parameter does not have any Angular decorators,
the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
the following properties:
- "attribute": if `@Attribute` is present. The injected attribute's
name is used as string literal type, or the `unknown` type if the
attribute name is not a string literal.
- "self": if `@Self` is present, always of type `true`.
- "skipSelf": if `@SkipSelf` is present, always of type `true`.
- "host": if `@Host` is present, always of type `true`.
- "optional": if `@Optional` is present, always of type `true`.
A property is only present if the corresponding decorator is used.
Note that the `@Inject` decorator is currently not included, as it's
non-trivial to properly convert the token's value expression to a
type that is valid in a declaration file.
Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.
This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.
Resolves FW-1870
PR Close#35695
When computing the dependencies between packages which are not in
node_modules, we may need to rely upon path-mappings to find the path
to the imported entry-point.
This commit allows ngcc to use the path-mappings from a tsconfig
file to find dependencies. By default any tsconfig.json file in the directory
above the `basePath` is loaded but it is possible to use a path to a
specific file by providing the `tsConfigPath` property to mainNgcc,
or to turn off loading any tsconfig file by setting `tsConfigPath` to `null`.
At the command line this is controlled via the `--tsconfig` option.
Fixes#36119
PR Close#36180
When two entry-points overlap, ngcc may attempt to process some
files twice. Previously, when this occured ngcc would just exit with an
error preventing any other entry-points from being processed.
This commit changes ngcc so that if `errorOnFailedEntryPoint` is false, it will
simply log an error and continue to process entry-points. This is useful when
ngcc is processing the entire node_modules folder and there are some invalid
entry-points that the project doesn't actually use.
PR Close#36083
Previously, when an entry-point contained code that caused its compilation
to fail, ngcc would exit in the middle of processing, possibly leaving other
entry-points in a corrupt state.
This change adds a new `errorOnFailedEntryPoint` option to `mainNgcc` that
specifies whether ngcc should exit immediately or log an error and continue
processing other entry-points.
The default is `false` so that ngcc will not error but continue processing
as much as possible. This is useful in post-install hooks, and async CLI
integration, where we do not have as much control over which entry-points
should be processed.
The option is forced to true if the `targetEntryPointPath` is provided,
such as the sync integration with the CLI, since in that case it is targeting
an entry-point that will actually be used in the current project so we do want
ngcc to exit with an error at that point.
PR Close#36083
Later when we implement the ability to continue processing when tasks have
failed to compile, we will also need to avoid processing tasks that depend
upon the failed task.
This refactoring exposes this list of dependent tasks in a way that can be
used to skip processing of tasks that depend upon a failed task.
It also changes the blocking model of the parallel mode of operation so
that non-typings tasks are now blocked on their corresponding typings task.
Previously the non-typings tasks could be triggered to run in parallel to
the typings task, since they do not have a hard dependency on each other,
but this made it difficult to skip task correctly if the typings task failed,
since it was possible that a non-typings task was already in flight when
the typings task failed. The result of this is a small potential degradation
of performance in async parallel processing mode, in the rare cases that
there were not enough unblocked tasks to make use of all the available
workers.
PR Close#36083
Moving the definition of the `onTaskCompleted` callback into `mainNgcc()`
allows it to be configured based on options passed in there more easily.
This will be the case when we want to configure whether to log or throw
an error for tasks that failed to be processed successfully.
This commit also creates two new folders and moves the code around a bit
to make it easier to navigate the code§:
* `execution/tasks`: specific helpers such as task completion handlers
* `execution/tasks/queues`: the `TaskQueue` implementations and helpers
PR Close#36083
When ngcc is compiling an entry-point, it uses a `ReflectionHost` that
is specific to its format, e.g. ES2015, ES5, UMD or CommonJS. During the
compilation of that entry-point however, the reflector may be used to
reflect into external libraries using their declaration files.
Up until now this was achieved by letting all `ReflectionHost` classes
consider their parent class for reflector queries, thereby ending up in
the `TypeScriptReflectionHost` that is a common base class for all
reflector hosts. This approach has proven to be prone to bugs, as
failing to call into the base class would cause incompatibilities with
reading from declaration files.
The observation can be made that there's only two distinct kinds of
reflection host queries:
1. the reflector query is about code that is part of the entry-point
that is being compiled, or
2. the reflector query is for an external library that the entry-point
depends on, in which case the information is reflected
from the declaration files.
The `ReflectionHost` that was chosen for the entry-point should serve
only reflector queries for the first case, whereas a regular
`TypeScriptReflectionHost` should be used for the second case. This
avoids the problem where a format-specific `ReflectionHost` fails to
handle the second case correctly, as it isn't even considered for such
reflector queries.
This commit introduces a `ReflectionHost` that delegates to the
`TypeScriptReflectionHost` for AST nodes within declaration files,
otherwise delegating to the format-specific `ReflectionHost`.
Fixes#35078
Resolves FW-1859
PR Close#36089
Previously, calculations related to the position of and difference between
SegmentMarkers required extensive computation based around the line,
line start positions and columns of each segment.
PR Close#36027
The merging algorithm needs to find, for a given segment, what the next
segment in the source file is. This change modifies the `generatedSegment`
properties in the mappings so that they have a link directly to the following
segment.
PR Close#36027
By computing and caching the start of each line, rather than the length
of each line, we can save a lot of duplicated computation in the `segmentDiff()`
and `offsetSegment()` functions.
PR Close#36027
Previously the list of original segments that was searched for incoming
mappings did not differentiate between different original source files.
Now there is a separate array of segments to search for each of the
original source files.
PR Close#36027
The `@angular/core` package has a large number of source files
and mappings which exposed performance issues in the new source-map
flattening algorithm.
This change uses a binary search (rather than linear) when finding
matching mappings to merge. Initial measurements indicate that this
reduces processing time for `@angular/core` by about 50%.
PR Close#36027
In some scenarios it is useful for the developer to indicate
to ngcc that it should not use the entry-point manifest
file, and instead write a new one.
In the ngcc command line tool, this option is set by specfying
```
--invalidate-entry-point-manifest
```
PR Close#35931
The `DirectoryWalkerEntryPointFinder` has to traverse the
entire node_modules library everytime it executes in order to
identify the entry-points that need to be processed. This is
very time consuming (several seconds for big projects on
Windows).
This commit changes the `DirectoryWalkerEntryPointFinder` to
use the `EntryPointManifest` to store the paths to entry-points
that were found when doing this initial node_modules traversal
in a file to be reused for subsequent calls.
This dramatically speeds up ngcc processing when it has been run once
already.
PR Close#35931
The new `EntryPointManifest` class can read and write a
manifest file that contains all the paths to the entry-points
that have been found in a node_modules folder.
This can be used to speed up finding entry-points in
subsequent runs.
The manifest file stores the ngcc version and hashes of
the package lock-file and project config, since if these
change the manifest will need to be recomputed.
PR Close#35931
This version of `LockFile` creates an "unlocker" child-process that monitors
the main ngcc process and deletes the lock file if it exits unexpectedly.
This resolves the issue where the main process could not be killed by pressing
Ctrl-C at the terminal.
Fixes#35761
PR Close#35861
The previous implementation mixed up the management
of locking a piece of code (both sync and async) with the
management of writing and removing the lockFile that is
used as the flag for which process has locked the code.
This change splits these two concepts up. Apart from
avoiding the awkward base class it allows the `LockFile`
implementation to be replaced cleanly.
PR Close#35861
This reduces the time that `findEntryPoints` takes from 9701.143ms to 4177.278ms, by reducing the file operations done.
Reference: #35717
PR Close#35756
With this change we spawn workers lazily based on the amount of work that needs to be done.
Before this change we spawned the maximum of workers possible. However, in some cases there are less tasks than the max number of workers which resulted in created unnecessary workers
Reference: #35717
PR Close#35719
Source-maps in the wild could be badly formatted,
causing the source-map flattening processing to fail
unexpectedly. Rather than causing the whole of ngcc
to crash, we gracefully fallback to just returning the
generated source-map instead.
PR Close#35718
Previously when rendering flattened source-maps, it was assumed that no
mapping would come from a line that is outside the lines of the actual
source content. It turns out this is not a valid assumption.
Now the code that renders flattened source-maps will handle such
mappings, with the additional benefit that the rendered source-map
will only contain mapping lines up to the last mapping, rather than a
mapping line for every content line.
Fixes#35709
PR Close#35718
If a package has a source-map but it does not provide
the actual content of the sources, then the source-map
flattening was crashing.
Now we ignore such mappings that have no source
since we are not able to compute the merged
mapping if there is no source file.
Fixes#35709
PR Close#35718
This commit adds a new ngcc configuration, `ignorableDeepImportMatchers`
for packages. This is a list of regular expressions matching deep imports
that can be safely ignored from that package. Deep imports that are not
ignored cause a warning to be logged.
// FW-1892
Fixes#35615
PR Close#35683
The library used by ngcc to update the source files (MagicString) is able
to generate a source-map but it is not able to account for any previous
source-map that the input text is already associated with.
There have been various attempts to fix this but none have been very
successful, since it is not a trivial problem to solve.
This commit contains a novel approach that is able to load up a tree of
source-files connected by source-maps and flatten them down into a single
source-map that maps directly from the final generated file to the original
sources referenced by the intermediate source-maps.
PR Close#35132
Previously if there were two path-mapped libraries that are in
different directories but the path of one started with same string
as the path of the other, we would incorrectly return the shorter
path - e.g. `dist/my-lib` and `dist/my-lib-second`. This was because
the list of `basePaths` was searched in ascending alphabetic order and
we were using `startsWith()` to match the path.
Now the `basePaths` are searched in reverse alphabetic order so the
longer path will be matched correctly.
// FW-1873
Fixes#35536
PR Close#35592
In ES5 code, TypeScript requires certain helpers (such as
`__spreadArrays()`) to be able to support ES2015+ features. These
helpers can be either imported from `tslib` (by setting the
`importHelpers` TS compiler option to `true`) or emitted inline (by
setting the `importHelpers` and `noEmitHelpers` TS compiler options to
`false`, which is the default value for both).
Ngtsc's `StaticInterpreter` (which is also used during ngcc processing)
is able to statically evaluate some of these helpers (currently
`__assign()`, `__spread()` and `__spreadArrays()`), as long as
`ReflectionHost#getDefinitionOfFunction()` correctly detects the
declaration of the helper. For this to happen, the left-hand side of the
corresponding call expression (i.e. `__spread(...)` or
`tslib.__spread(...)`) must be evaluated as a function declaration for
`getDefinitionOfFunction()` to be called with.
In the case of imported helpers, the `tslib.__someHelper` expression was
resolved to a function declaration of the form
`export declare function __someHelper(...args: any[][]): any[];`, which
allows `getDefinitionOfFunction()` to correctly map it to a TS helper.
In contrast, in the case of emitted helpers (and regardless of the
module format: `CommonJS`, `ESNext`, `UMD`, etc.)), the `__someHelper`
identifier was resolved to a variable declaration of the form
`var __someHelper = (this && this.__someHelper) || function () { ... }`,
which upon further evaluation was categorized as a `DynamicValue`
(prohibiting further evaluation by the `getDefinitionOfFunction()`).
As a result of the above, emitted TypeScript helpers were not evaluated
in ES5 code.
---
This commit changes the detection of TS helpers to leverage the existing
`KnownFn` feature (previously only used for built-in functions).
`Esm5ReflectionHost` is changed to always return `KnownDeclaration`s for
TS helpers, both imported (`getExportsOfModule()`) as well as emitted
(`getDeclarationOfIdentifier()`).
Similar changes are made to `CommonJsReflectionHost` and
`UmdReflectionHost`.
The `KnownDeclaration`s are then mapped to `KnownFn`s in
`StaticInterpreter`, allowing it to statically evaluate call expressions
involving any kind of TS helpers.
Jira issue: https://angular-team.atlassian.net/browse/FW-1689
PR Close#35191
When statically evaluating CommonJS code it is possible to find that we
are looking for the declaration of an identifier that actually came from
a typings file (rather than a CommonJS file).
Previously, the CommonJS reflection host would always try to use a
CommonJS specific algorithm for finding identifier declarations, but
when the id is actually in a typings file this resulted in the returned
declaration being the containing file of the declaration rather than the
declaration itself.
Now the CommonJS reflection host will check to see if the file
containing the identifier is a typings file and use the appropriate
stategy.
(Note: This is the equivalent of #34356 but for CommonJS.)
PR Close#35191
In ES5 and ES2015, class identifiers may have aliases. Previously, the
`NgccReflectionHost`s recognized the following formats:
- ES5:
```js
var MyClass = (function () {
function InnerClass() {}
InnerClass_1 = InnerClass;
...
}());
```
- ES2015:
```js
let MyClass = MyClass_1 = class MyClass { ... };
```
In addition to the above, this commit adds support for recognizing an
alias outside the IIFE in ES5 classes (which was previously not
supported):
```js
var MyClass = MyClass_1 = (function () { ... }());
```
Jira issue: [FW-1869](https://angular-team.atlassian.net/browse/FW-1869)
Partially addresses #35399.
PR Close#35527
`Esm5ReflectionHost#getInnerFunctionDeclarationFromClassDeclaration()`
was already called with `ts.Declaration`, not `ts.Node`, so we can
tighten its parameter type and get rid of a redundant check.
`getIifeBody()` (called inside
`getInnerFunctionDeclarationFromClassDeclaration()`) will check whether
the given `ts.Declaration` is a `ts.VariableDeclaration`.
PR Close#35527
ngcc uses a lockfile to prevent two ngcc instances from executing at the
same time. Previously, if a lockfile was found the current process would
error and exit.
Now, when in async mode, the current process is able to wait for the previous
process to release the lockfile before continuing itself.
PR Close#35131
The `TargetedEntryPointFinder` must work out what the
containing package is for each entry-point that it finds.
The logic for doing this was flawed in the case that the
package was in a path-mapped directory and not in a
node_modules folder. This meant that secondary entry-points
were incorrectly setting their own path as the package
path, rather than the primary entry-point path.
Fixes#35188
PR Close#35227
To support parallel CLI builds we instruct developers to pre-process
their node_modules via ngcc at the command line.
Despite doing this ngcc was still trying to set a lock when it was being
triggered by the CLI for packages that are not going to be processed,
since they are not compiled by Angular for instance.
This commit checks whether a target package needs to be compiled
at all before attempting to set the lock.
Fixes#35000
PR Close#35057
If ngcc gets updated to a new version then the artifacts
left in packages that were processed by the previous
version are possibly invalid.
Previously we just errored if we found packages that
had already been processed by an outdated version.
Now we automatically clean the packages that have
outdated artifacts so that they can be reprocessed
correctly with the current ngcc version.
Fixes#35082
PR Close#35079
Now `hasBeenProcessed()` will no longer throw if there
is an entry-point that has been built with an outdated
version of ngcc.
Instead it just returns `false`, which will include it in this
processing run.
This is a precursor to adding functionality that will
automatically revert outdate build artifacts.
PR Close#35079
The message now gives concrete advice to developers who
experience the error due to running multiple simultaneous builds
via webpack.
Fixes#35000
PR Close#35001
In #34288, ngtsc was refactored to separate the result of the analysis
and resolve phase for more granular incremental rebuilds. In this model,
any errors in one phase transition the trait into an error state, which
prevents it from being ran through subsequent phases. The ngcc compiler
on the other hand did not adopt this strict error model, which would
cause incomplete metadata—due to errors in earlier phases—to be offered
for compilation that could result in a hard crash.
This commit updates ngcc to take advantage of ngtsc's `TraitCompiler`,
that internally manages all Ivy classes that are part of the
compilation. This effectively replaces ngcc's own `AnalyzedFile` and
`AnalyzedClass` types, together with all of the logic to drive the
`DecoratorHandler`s. All of this is now handled in the `TraitCompiler`,
benefiting from its explicit state transitions of `Trait`s so that the
ngcc crash is a thing of the past.
Fixes#34500
Resolves FW-1788
PR Close#34889
Previously, while trying to build an `NgccReflectionHost`'s
`privateDtsDeclarationMap`, `computePrivateDtsDeclarationMap()` would
try to collect exported declarations from all source files of the
program (i.e. without checking whether they were within the target
package, as happens for declarations in `.d.ts` files).
Most of the time, that would not be a problem, because external packages
would be represented as `.d.ts` files in the program. But when an
external package had no typings, the JS files would be used instead. As
a result, the `ReflectionHost` would try to (unnecessarilly) parse the
file in order to extract exported declarations, which in turn would be
harmless in most cases.
There are certain cases, though, where the `ReflectionHost` would throw
an error, because it cannot parse the external package's JS file. This
could happen, for example, in `UmdReflectionHost`, which expects the
file to contain exactly one statement. See #34544 for more details on a
real-world failure.
This commit fixes the issue by ensuring that
`computePrivateDtsDeclarationMap()` will only collect exported
declarations from files within the target package.
Jira issue: [FW-1794](https://angular-team.atlassian.net/browse/FW-1794)
Fixes#34544
PR Close#34811
Consider a library that uses a shared constant for host bindings. e.g.
```ts
export const BASE_BINDINGS= {
'[class.mat-themed]': '_isThemed',
}
----
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir1 {}
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir2 {}
```
Previously when these components were shipped as part of the
library to NPM, consumers were able to consume `Dir1` and `Dir2`.
No errors showed up.
Now with Ivy, when ngcc tries to process the library, an error
will be thrown. The error is stating that the host bindings should
be an object (which they obviously are). This happens because
TypeScript transforms the object spread to individual
`Object.assign` calls (for compatibility).
The partial evaluator used by the `@Directive` annotation handler
is unable to process this expression because there is no
integrated support for `Object.assign`. In View Engine, this was
not a problem because the `metadata.json` files from the library
were used to compute the host bindings.
Fixes#34659
PR Close#34661
Ngcc adds properties to the `package.json` files of the entry-points it
processes to mark them as processed for a format and point to the
created Ivy entry-points (in case of `--create-ivy-entry-points`). When
running ngcc in parallel mode (which is the default for the standalone
ngcc command), multiple formats can be processed simultaneously for the
same entry-point and the order of completion is not deterministic.
Previously, ngcc would append new properties at the end of the target
object in `package.json` as soon as the format processing was completed.
As a result, the order of properties in the resulting `package.json`
(when processing multiple formats for an entry-point in parallel) was
not deterministic. For tools that use file hashes for caching purposes
(such as Bazel), this lead to a high probability of cache misses.
This commit fixes the problem by ensuring that the position of
properties added to `package.json` files is deterministic and
independent of the order in which each format is processed.
Jira issue: [FW-1801](https://angular-team.atlassian.net/browse/FW-1801)
Fixes#34635
PR Close#34870
The Angular CLI will continue to call ngcc on all possible packages, even if they
have already been processed by ngcc in a postinstall script.
In a parallel build environment, this was causing ngcc to complain that it was
being run in more than one process at the same time.
This commit moves the check for whether the targeted package has been
processed outside the locked code section, since there is no issue with
multiple ngcc processes from doing this check.
PR Close#34722
Previously, it was possible for multiple instance of ngcc to be running
at the same time, but this is not supported and can cause confusing and
flakey errors at build time.
Now, only one instance of ngcc can run at a time. If a second instance
tries to execute it fails with an appropriate error message.
See https://github.com/angular/angular/issues/32431#issuecomment-571825781
PR Close#34722
When searching the typings program for a package for imports a
distinction is drawn between missing entry-points and deep imports.
Previously in the `DtsDependencyHost` these deep imports may be
marked as missing if there was no typings file at the deep import path.
Instead there may be a javascript file instead. In practice this means
the import is "deep" and not "missing".
Now the `DtsDependencyHost` will also consider `.js` files when checking
for deep-imports, and it will also look inside `@types/...` for a suitable
deep-imported typings file.
Fixes#34720
PR Close#34695
Previously, `CommonJsDependencyHost.collectDependencies()` would only
find dependencies via imports of the form `var foo = require('...');` or
`var foo = require('...'), bar = require('...');` However, CommonJS
files can have imports in many different forms. By failing to recognize
other forms of imports, the associated dependencies were missed, which
in turn resulted in entry-points being compiled out-of-order and failing
due to that.
While we cannot easily capture all different types of imports, this
commit enhances `CommonJsDependencyHost` to recognize the following
common forms of imports:
- Imports in property assignments. E.g.:
`exports.foo = require('...');` or
`module.exports = {foo: require('...')};`
- Imports for side-effects only. E.g.:
`require('...');`
- Star re-exports (with both emitted and imported heleprs). E.g.:
`__export(require('...'));` or
`tslib_1.__exportStar(require('...'), exports);`
PR Close#34528
Currently the decorator handlers are run against all `SourceFile`s in the compilation, but we shouldn't be doing it against declaration files. This initially came up as a CI issue in #33264 where it was worked around only for the `DirectiveDecoratorHandler`. These changes move the logic into the `TraitCompiler` and `DecorationAnalyzer` so that it applies to all of the handlers.
PR Close#34557
Previously, the `CommonJsReflectionHost` and `UmdReflectionHost` would
only recognize re-exports of the form `__export(...)`. This is what
re-exports look like, when the TypeScript helpers are emitted inline
(i.e. when compiling with the default [TypeScript compiler options][1]
that include `noEmitHelpers: false` and `importHelpers: false`).
However, when compiling with `importHelpers: true` and [tslib][2] (which
is the recommended way for optimized bundles), the re-exports will look
like: `tslib_1.__exportStar(..., exports)`
These types of re-exports were previously not recognized by the
CommonJS/UMD `ReflectionHost`s and thus ignored.
This commit fixes this by ensuring both re-export formats are
recognized.
[1]: https://www.typescriptlang.org/docs/handbook/compiler-options.html
[2]: https://www.npmjs.com/package/tslib
PR Close#34527
If a class was defined as a class expression
in a variable declaration, the definitions
were being inserted before the statment's
final semi-colon.
Now the insertion point will be after the
full statement.
Fixes#34648
PR Close#34677
In some cases, where a module imports a dependency
but does not actually use it, UMD bundlers may remove
the dependency parameter from the UMD factory function
definition.
For example:
```
import * as x from 'x';
import * as z from 'z';
export const y = x;
```
may result in a UMD bundle including:
```
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ?
factory(exports, require('x'), require('z')) :
typeof define === 'function' && define.amd ?
define(['exports', 'x', 'z'], factory) :
(global = global || self, factory(global.myBundle = {}, global.x));
}(this, (function (exports, x) { 'use strict';
...
})));
```
Note that while the `z` dependency is provide in the call,
the factory itself only accepts `exports` and `x` as parameters.
Previously ngcc appended new dependencies to the end of the factory
function, but this breaks in the above scenario. Now the new
dependencies are prefixed at the front of parameters/arguments
already in place.
Fixes#34653
PR Close#34660
Previously, in cases were values were expensive to compute and would be
used multiple times, a combination of a regular `Map` and a helper
function (`getOrDefault()`) was used to ensure values were only computed
once.
This commit uses a special `Map`-like structure to compute and memoize
such expensive values without the need to a helper function.
PR Close#34512
This change should not have any impact on the code's behavior (based on
how the function is currently used), but it will avoid unnecessary work.
PR Close#34512
While different, CommonJS and UMD have a lot in common regarding the
their exports are constructed. Therefore, there was some code
duplication between `CommonJsReflectionHost` and `UmdReflectionHost`.
This commit extracts some of the common bits into a separate file as
helpers to allow reusing the code in both `ReflectionHost`s.
PR Close#34512
Previously, `UmdReflectionHost` would only recognize re-exports of the
form `__export(someIdentifier)` and not `__export(require('...'))`.
However, it is possible in some UMD variations to have the latter format
as well. See discussion in https://github.com/angular/angular/pull/34254/files#r359515373
This commit adds support for re-export of the form
`__export(require('...'))` in UMD.
PR Close#34512
This fix was part of a broader `ngtsc`/`ngcc` fix in 02bab8cf9 (see
there for details). In 02bab8cf9, the fix was only applied to
`CommonJsReflectionHost`, but it is equally applicable to
`UmdReflectionHost`. Later in #34254, the fix was partially ported to
`UmdReflectionHost` by fixing the `extractUmdReexports()` method.
This commit fully fixes `ngcc`'s handling of inline exports for code in
UMD format.
PR Close#34512
Previously, if `UmdRenderingFormatter#addImports()` was called with an
empty list of imports to add (i.e. no new imports were needed), it would
add trailing commas in several locations (arrays, function arguments,
function parameters), thus making the code imcompatible with legacy
browsers such as IE11.
This commit fixes it by ensuring that no trailing commas are added if
`addImports()` is called with an empty list of imports.
This is a follow-up to #34353.
Fixes#34525
PR Close#34545
ngcc computes a dependency graph of entry-points to ensure that
entry-points are processed in the correct order. Previously only the imports
in source files were analysed to determine the dependencies for each
entry-point.
This is not sufficient when an entry-point has a "type-only" dependency
- for example only importing an interface from another entry-point.
In this case the "type-only" import does not appear in the
source code. It only appears in the typings files. This can cause a
dependency to be missed on the entry-point.
This commit fixes this by additionally processing the imports in the
typings program, as well as the source program.
Note that these missing dependencies could cause unexpected flakes when
running ngcc in async mode on multiple processes due to the way that
ngcc caches files when they are first read from disk.
Fixes#34411
// FW-1781
PR Close#34494
The `DependencyHost` implementations were duplicating the "postfix" strings
which are used to find matching paths when resolving module specifiers.
Now the hosts reuse the postfixes given to the `ModuleResolver` that is
passed to the host.
PR Close#34494
Rather than return a new object of dependency info from calls to
`collectDependencies()` we now pass in an object that will be updated
with the dependency info. This is in preparation of a change where
we will collect dependency information from more than one
`DependencyHost`.
Also to better fit with this approach the name is changed from
`findDependencies()` to `collectDependencies()`.
PR Close#34494
Angular View Engine uses global knowledge to compile the following code:
```typescript
export class Base {
constructor(private vcr: ViewContainerRef) {}
}
@Directive({...})
export class Dir extends Base {
// constructor inherited from base
}
```
Here, `Dir` extends `Base` and inherits its constructor. To create a `Dir`
the arguments to this inherited constructor must be obtained via dependency
injection. View Engine is able to generate a correct factory for `Dir` to do
this because via metadata it knows the arguments of `Base`'s constructor,
even if `Base` is declared in a different library.
In Ivy, DI is entirely a runtime concept. Currently `Dir` is compiled with
an ngDirectiveDef field that delegates its factory to `getInheritedFactory`.
This looks for some kind of factory function on `Base`, which comes up
empty. This case looks identical to an inheritance chain with no
constructors, which works today in Ivy.
Both of these cases will now become an error in this commit. If a decorated
class inherits from an undecorated base class, a diagnostic is produced
informing the user of the need to either explicitly declare a constructor or
to decorate the base class.
PR Close#34460
Adds a compilation error if the consumer tries to pass in an undecorated class into the `providers` of an `NgModule`, or the `providers`/`viewProviders` arrays of a `Directive`/`Component`.
PR Close#34460
Now that the source to typings matching is able to handle
aliasing of exports, there is no need to handle aliases in private
declarations analysis.
These were originally added to cope when the typings files had
to use the name that the original source files used when exporting.
PR Close#34254
The naïve matching algorithm we previously used to match declarations in
source files to declarations in typings files was based only on the name
of the thing being declared. This did not handle cases where the declared
item had been exported via an alias - a common scenario when one of the two
file sets (source or typings) has been flattened, while the other has not.
The new algorithm tries to overcome this by creating two maps of export
name to declaration (i.e. `Map<string, ts.Declaration>`).
One for the source files and one for the typings files.
It then joins these two together by matching export names, resulting in a
new map that maps source declarations to typings declarations directly
(i.e. `Map<ts.Declaration, ts.Declaration>`).
This new map can handle the declaration names being different between the
source and typings as long as they are ultimately both exported with the
same alias name.
Further more, there is one map for "public exports", i.e. exported via the
root of the source tree (the entry-point), and another map for "private
exports", which are exported from individual files in the source tree but
not necessarily from the root. This second map can be used to "guess"
the mapping between exports in a deep (non-flat) file tree, which can be
used by ngcc to add required private exports to the entry-point.
Fixes#33593
PR Close#34254
In TS we can re-export imports using statements of the form:
```
export * from 'some-import';
```
This is downleveled in UMD to:
```
function factory(exports, someImport) {
function __export(m) {
for (var p in m) if (!exports.hasOwnProperty(p)) exports[p] = m[p];
}
__export(someImport);
}
```
This commit adds support for this.
PR Close#34254
In TS we can re-export imports using statements of the form:
```
export * from 'some-import';
```
This can be downleveled in CommonJS to either:
```
__export(require('some-import'));
```
or
```
var someImport = require('some-import');
__export(someImport);
```
Previously we only supported the first downleveled version.
This commit adds support for the second version.
PR Close#34254
Previously individual properties of the src bundle program were
passed to the reflection host constructors. But going forward,
more properties will be required. To prevent the signature getting
continually larger and more unwieldy, this change just passes the
whole src bundle to the constructor, allowing it to extract what it
needs.
PR Close#34254
This commit adds three previously missing validations to
NgModule.declarations:
1. It checks that declared classes are actually within the current
compilation.
2. It checks that declared classes are directives, components, or pipes.
3. It checks that classes are declared in at most one NgModule.
PR Close#34404
A quirk of the Angular template parser is that when parsing templates in the
"default" mode, with options specified by the user, the source mapping
information in the template AST may be inaccurate. As a result, the compiler
parses the template twice: once for "emit" and once to produce an AST with
accurate sourcemaps for diagnostic production.
Previously, only the first parse was performed during analysis. The second
parse occurred during the template type-checking phase, just in time to
produce the template type-checking file.
However, with the reuse of analysis results during incremental builds, it
makes more sense to do the diagnostic parse eagerly during analysis so that
the work isn't unnecessarily repeated in subsequent builds. This commit
refactors the `ComponentDecoratorHandler` to do both parses eagerly, which
actually cleans up some complexity around template parsing as well.
PR Close#34334
During TypeScript module resolution, a lot of filesystem requests are
done. This is quite an expensive operation, so a module resolution cache
can be used to speed up the process significantly.
This commit lets the Ivy compiler perform all module resolution with a
module resolution cache. Note that the module resolution behavior can be
changed with a custom compiler host, in which case that custom host
implementation is responsible for caching. In the case of the Angular
CLI a custom compiler host with proper module resolution caching is
already in place, so the CLI already has this optimization.
PR Close#34332
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.
To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.
The new algorithm implemented by this commit is such:
1) Each incremental build starts with knowledge of the last known good
dependency graph and analysis results from the last successful build,
plus of course information about the set of files changed.
2) The previous dependency graph's information is used to determine the
set of source files which have "logically" changed. A source file is
considered logically changed if it or any of its dependencies have
physically changed (on disk) since the last successful compilation. Any
logically unchanged dependencies have their dependency information copied
over to the new dependency graph.
3) During the `TraitCompiler`'s loop to consider all source files in the
program, if a source file is logically unchanged then its previous
analyses are "adopted" (and their 'register' steps are run). If the file
is logically changed, then it is re-analyzed as usual.
4) Then, incremental build proceeds as before, with the new dependency graph
being used to determine the set of files which require re-emitting.
This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.
Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.
PR Close#34288
Previously 'analyze' in the various `DecoratorHandler`s not only extracts
information from the decorators on the classes being analyzed, but also has
several side effects within the compiler:
* it can register metadata about the types involved in global metadata
trackers.
* it can register information about which .ngfactory symbols are actually
needed.
In this commit, these side-effects are moved into a new 'register' phase,
which runs after the 'analyze' step. Currently this is a no-op refactoring
as 'register' is always called directly after 'analyze'. In the future this
opens the door for re-use of prior analysis work (with only 'register' being
called, to apply the above side effects).
Also as part of this refactoring, the reification of NgModule scope
information into the incremental dependency graph is moved to the
`NgtscProgram` instead of the `TraitCompiler` (which now only manages trait
compilation and does not have other side effects).
PR Close#34288
Prior to this commit, the `IvyCompilation` tracked the state of each matched
`DecoratorHandler` on each class in the `ts.Program`, and how they
progressed through the compilation process. This tracking was originally
simple, but had grown more complicated as the compiler evolved. The state of
each specific "target" of compilation was determined by the nullability of
a number of fields on the object which tracked it.
This commit formalizes the process of compilation of each matched handler
into a new "trait" concept. A trait is some aspect of a class which gets
created when a `DecoratorHandler` matches the class. It represents an Ivy
aspect that needs to go through the compilation process.
Traits begin in a "pending" state and undergo transitions as various steps
of compilation take place. The `IvyCompilation` class is renamed to the
`TraitCompiler`, which manages the state of all of the traits in the active
program.
Making the trait concept explicit will support future work to incrementalize
the expensive analysis process of compilation.
PR Close#34288
Previously the UMD rendering formatter assumed that
there would already be import (and an export) arguments
to the UMD factory function.
This commit adds support for this corner case.
Fixes#34138
PR Close#34353
When statically evalulating UMD code it is possible to find
that we are looking for the declaration of an identifier that
actually came from a typings file (rather than a UMD file).
Previously, the UMD reflection host would always try to use
a UMD specific algorithm for finding identifier declarations,
but when the id is actually in a typings file this resulted in the
returned declaration being the containing file of the declaration
rather than the declaration itself.
Now the UMD reflection host will check to see if the file containing
the identifier is a typings file and use the appropriate stategy.
PR Close#34356
The undecorated child migration creates a synthetic decorator, which
contained `"exportAs": ["exportName"]` as obtained from the metadata of
the parent class. This is a problem, as `exportAs` needs to specified
as a comma-separated string instead of an array. This commit fixes the
bug by transforming the array of export names back to a comma-separated
string.
PR Close#34014
When ngcc is analyzing synthetically inserted decorators from a
migration, it is typically not expected that any diagnostics are
produced. In the situation where a diagnostic is produced, however, the
diagnostic would not be reported at all. This commit ensures that
diagnostics in migrations are reported.
PR Close#34014
Previously the `rootDir` was set to the entry-point path but
this is incorrect if the source files are stored in a directory outside
the entry-point path. This is the case in the latest versions of the
Angular CDK.
Instead the `rootDir` should be the containing package path, which is
guaranteed to include all the source for the entry-point.
---
A symptom of this is an error when ngcc is trying to process the source of
an entry-point format after the entry-point's typings have already been
processed by a previous processing run.
During processing the `_toR3Reference()` function gets called which in turn
makes a call to `ReflectionHost.getDtsDeclaration()`. If the typings files
are also being processed this returns the node from the dts typings files.
But if we have already processed the typings files and are now processing
only an entry-point format without typings, the call to
`ReflectionHost.getDtsDeclaration()` returns `null`.
When this value is `null`, a JS `valueRef` is passed through as the DTS
`typeRef` to the `ReferenceEmitter`. In this case, the `ReferenceEmitter`
fails during `emit()` because no `ReferenceEmitStrategy` is able to provide
an emission:
1) The `LocalIdentifierStrategy` is not able help because in this case
`ImportMode` is `ForceNewImport`.
2) The `LogicalProjectStrategy` cannot find the JS file below the `rootDir`.
The second strategy failure is fixed by this PR.
Fixes https://github.com/angular/ngcc-validation/issues/495
PR Close#34212
By ensuring that legacy i18n message ids are rendered into the templates
of components for packages processed by ngcc, we ensure that these packages
can be used in an application that may provide translations in a legacy
format.
Fixes#34056
PR Close#34135
Placing this configuration in to the bundle avoids having to pass the
value around through lots of function calls, but also could enable
support for different behaviour per bundle in the future.
PR Close#34135
For injectables, we currently generate a factory function in the
injectable def (prov) that delegates to the factory function in
the factory def (fac). It looks something like this:
```
factory: function(t) { return Svc.fac(t); }
```
The extra wrapper function is unnecessary since the args for
the factory functions are the same. This commit changes the
compiler to generate this instead:
```
factory: Svc.fac
```
Because we are generating less code for each injectable, we
should see some modest code size savings. AIO's main bundle
is about 1 KB smaller.
PR Close#34076
Previously, the Angular AOT compiler would always add a
`ɵprov` to injectables. But in ngcc this resulted in duplicate `ɵprov`
properties since published libraries already have this property.
Now in ngtsc, trying to add a duplicate `ɵprov` property is an error,
while in ngcc the additional property is silently not added.
// FW-1750
PR Close#34085
In a package.json file, the "typings" or "types" field could be an array
of typings files. ngcc would previously crash unexpectedly for such
packages, as it assumed that the typings field would be a string. This
commit lets ngcc skip over such packages, as having multiple typing
entry-points is not supported for Angular packages so it is safe to
ignore them.
Fixes#33646
PR Close#33973
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)
PR Close#33609
The ReflectionHost supports enumeration of constructor parameters, and one
piece of information it returns describes the origin of the parameter's
type. Parameter types come in two flavors: local (the type is not imported
from anywhere) or non-local (the type comes via an import).
ngcc incorrectly classified all type parameters as 'local', because in the
source files that ngcc processes the type parameter is a real ts.Identifer.
However, that identifier may still have come from an import and thus might
be non-local.
This commit changes ngcc's ReflectionHost(s) to properly recognize and
report these non-local type references.
Fixes#33677
PR Close#33901
In #32902 a bug was supposedly fixed where internal classes as used
within `ModuleWithProviders` are publicly exported, even when the
typings file already contained the generic type on the
`ModuleWithProviders`. This fix turns out to have been incomplete, as
the `ModuleWithProviders` analysis is not done when not processing the
typings files.
The effect of this bug is that formats that are processed after the
initial format had been processed would not have exports for internal
symbols, resulting in "export '...' was not found in '...'" errors.
This commit fixes the bug by always running the `ModuleWithProviders`
analyzer. An integration test has been added that would fail prior to
this change.
Fixes#33701
PR Close#33875
Some declaration files may not be referenced from an entry-point's
main typings file, as it may declare types that are only used internally.
ngcc has logic to include declaration files based on all source files,
to ensure internal declaration files are available.
For packages following APF layout, however, this logic was insufficient.
Consider an entry-point with base path of `/esm2015/testing` and typings
residing in `/testing`, the file
`/esm2015/testing/src/nested/internal.js` has its typings file at
`/testing/src/nested/internal.d.ts`. Previously, the declaration was
assumed to be located at `/esm2015/testing/testing/internal.d.ts` (by
means of `/esm2015/testing/src/nested/../../testing/internal.d.ts`)
which is not where the declaration file can be found. This commit
resolves the issue by looking in the correct directory.
PR Close#33875
In flat bundle formats, multiple classes that have the same name can be
suffixed to become unique. In ES5-like bundles this results in the outer
declaration from having a different name from the "implementation"
declaration within the class' IIFE, as the implementation declaration
may not have been suffixed.
As an example, the following code would fail to have a `Directive`
decorator as ngcc would search for `__decorate` calls that refer to
`AliasedDirective$1` by name, whereas the `__decorate` call actually
uses the `AliasedDirective` name.
```javascript
var AliasedDirective$1 = /** @class */ (function () {
function AliasedDirective() {}
AliasedDirective = tslib_1.__decorate([
Directive({ selector: '[someDirective]' }),
], AliasedDirective);
return AliasedDirective;
}());
```
This commit fixes the problem by not relying on comparing names, but
instead finding the declaration and matching it with both the outer
and inner declaration.
PR Close#33878
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.
This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.
Fixes#32665
PR Close#33514
The reflection hosts have been updated to support the following
code forms, which were found in some minified library code:
* The class IIFE not being wrapped in parentheses.
* Calls to `__decorate()` being combined with the IIFE return statement.
PR Close#33777
Previously we only removed `__decorate()` calls that looked like:
```
SomeClass = __decorate(...);
```
But in some minified scenarios this call gets wrapped up with the
return statement of the IIFE.
```
return SomeClass = __decorate(...);
```
This is now removed also, leaving just the return statement:
```
return SomeClass;
```
PR Close#33777
The `dist/` directory has a duplicate `package.json` pointing to the
same files, which (under certain configurations) can causes ngcc to try
to process the files twice and fail.
This commit adds a default ngcc config for `ng2-dragula` to ignore the
`dist/` entry-point.
Fixes#33718
PR Close#33797
Previously the renderers were fixed so that they inserted extra
"adjacent" statements after the last static property of classes.
In order to help the build-optimizer (in Angular CLI) to be able to
tree-shake classes effectively, these statements should also appear
after any helper calls, such as `__decorate()`.
This commit moves the computation of this positioning into the
`NgccReflectionHost` via the `getEndOfClass()` method, which
returns the last statement that is related to the class.
FW-1668
PR Close#33689
When ngcc is configured to generate reexports for a package using the
`generateDeepReexports` configuration option, it could incorrectly
render the reexports as often as the number of compiled classes in the
declaration file. This would cause compilation errors due to duplicated
declarations.
PR Close#33658
We already have special cases for the `__spread` helper function and with this change we handle the new tslib helper introduced in version 1.10 `__spreadArrays`.
For more context see: https://github.com/microsoft/tslib/releases/tag/1.10.0Fixes: #33614
PR Close#33617
When decorating classes with ivy definitions (e.g. `ɵfac` or `ɵdir`)
the inner name of the class declaration must be used.
This is because in ES5 the definitions are inside the class's IIFE
where the outer declaration has not yet been initialized.
PR Close#33533
In ES5 the class consists of an outer variable declaration that is
initialised by an IIFE. Inside the IIFE the class is implemented by
an inner function declaration that is returned from the IIFE.
This inner declaration may have a different name to the outer
declaration.
This commit overrides `getInternalNameOfClass()` and
`getAdjacentNameOfClass()` in `Esm5ReflectionHost` with methods that
can find the correct inner declaration name identifier.
PR Close#33533
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.
PR Close#33264
In Angular View Engine, there are two kinds of decorator inheritance:
1) both the parent and child classes have decorators
This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).
2) only the parent class has a decorator
If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.
This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.
Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.
PR Close#33362
When upgrading an Angular application to a new version using the Angular
CLI, built-in schematics are being run to update user code from
deprecated patterns to the new way of working. For libraries that have
been built for older versions of Angular however, such schematics have
not been executed which means that deprecated code patterns may still be
present, potentially resulting in incorrect behavior.
Some of the logic of schematics has been ported over to ngcc migrations,
which are automatically run on libraries. These migrations achieve the
same goal of the regular schematics, but operating on published library
sources instead of used code.
PR Close#33362
Previously, the (currently disabled) undecorated parent migration in
ngcc would produce errors when a base class could not be determined
statically or when a class extends from a class in another package. This
is not ideal, as it would cause the library to fail compilation without
a workaround, whereas those problems are not guaranteed to cause issues.
Additionally, inheritance chains were not handled. This commit reworks
the migration to address these limitations.
PR Close#33362
In ngcc's migration system, synthetic decorators can be injected into a
compilation to ensure that certain classes are compiled with Angular
logic, where the original library code did not include the necessary
decorators. Prior to this change, synthesized decorators would have a
fake AST structure as associated node and a made-up identifier. In
theory, this may introduce issues downstream:
1) a decorator's node is used for diagnostics, so it must have position
information. Having fake AST nodes without a position is therefore a
problem. Note that this is currently not a problem in practice, as
injected synthesized decorators would not produce any diagnostics.
2) the decorator's identifier should refer to an imported symbol.
Therefore, it is required that the symbol is actually imported.
Moreover, bundle formats such as UMD and CommonJS use namespaces for
imports, so a bare `ts.Identifier` would not be suitable to use as
identifier. This was also not a problem in practice, as the identifier
is only used in the `setClassMetadata` generated code, which is omitted
for synthetically injected decorators.
To remedy these potential issues, this commit makes a decorator's
identifier optional and switches its node over from a fake AST structure
to the class' name.
PR Close#33362
A class that is provided as Angular service is required to have an
`@Injectable()` decorator so that the compiler generates its injectable
definition for the runtime. Applications are automatically migrated
using the "missing-injectable" schematic, however libraries built for
older version of Angular may not yet satisfy this requirement.
This commit ports the "missing-injectable" schematic to a migration that
is ran when ngcc is processing a library. This ensures that any service
that is provided from an NgModule or Directive/Component will have an
`@Injectable()` decorator.
PR Close#33362
ngcc has an internal cache of computed decorator information for
reflected classes, which could previously be mutated by consumers of the
reflection host. With the ability to inject synthesized decorators, such
decorators would inadvertently be added into the array of decorators
that was owned by the internal cache of the reflection host, incorrectly
resulting in synthesized decorators to be considered real decorators on
a class. This commit fixes the issue by cloning the cached array before
returning it.
PR Close#33362
This commit adapts the private NgModule re-export system (using aliasing) to
ngcc. Not all ngcc compilations are compatible with these re-exports, as
they assume a 1:1 correspondence between .js and .d.ts files. The primary
concern here is supporting them for commonjs-only packages.
PR Close#33177
In ES5 modules, the class declarations consist of an IIFE with inner
and outer declarations that represent the class. The `EsmReflectionHost`
has logic to ensure that `getDeclarationOfIdentifier()` always returns the
outer declaration.
Before this commit, if an identifier referred to an alias of the inner
declaration, then `getDeclarationOfIdentifier()` was failing to find
the outer declaration - instead returning the inner declaration.
Now the identifier is correctly resolved up to the outer declaration
as expected.
This should fix some of the failing 3rd party packages discussed in
https://github.com/angular/ngcc-validation/issues/57.
PR Close#33252
This commit fixes ngtsc's import generator to use the ReflectionHost when
looking through the exports of an ES module to find the export of a
particular declaration that's being imported. This is necessary because
some module formats like CommonJS have unusual export mechanics, and the
normal TypeScript ts.TypeChecker does not understand them.
This fixes an issue with ngcc + CommonJS where exports were not being
enumerated correctly.
FW-1630 #resolve
PR Close#33192
Normally, when ngcc encounters a package with missing dependencies while
attempting to determine a compilation ordering, it will ignore that package.
This commit adds a configuration for a flag to tell ngcc to compile the
package anyway, regardless of any missing dependencies.
FW-1931 #resolve
PR Close#33192
In the ReflectionHost API, a 'viaModule' indicates that a particular value
originated in another absolute module. It should always be 'null' for values
originating in relatively-imported modules.
This commit fixes a bug in the CommonJsReflectionHost where viaModule would
be reported even for relatively-imported values, which causes invalid import
statements to be generated during compilation.
A test is added to verify the correct behavior.
FW-1628 #resolve
PR Close#33192
Previously, when `ngcc` was reflecting on class members it did not
account for the fact that a member could be of the kind
`IndexSignature`. This can happen, for example, on abstract classes (as
is the case for [JsonCallbackContext][1]).
Trying to reflect on such members (and failing to recognize their kind),
resulted in warnings, such as:
```
Warning: Unknown member type: "[key: string]: (data: any) => void;
```
While these warnings are harmless, they can be confusing and worrisome
for users.
This commit avoids such warnings by detecting class members of the
`IndexSignature` kind and ignoring them.
[1]: https://github.com/angular/angular/blob/4659cc26e/packages/common/http/src/jsonp.ts#L39
PR Close#33198
Previously, the list of missing dependencies was not explicitly joined,
which resulted in the default `,` joiner being used during
stringification.
This commit explicitly joins the missing dependency lines to avoid
unnecessary commas.
Before:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
, - dependency 2
, - dependency 3
```
After:
```
The target entry-point "some-entry-point" has missing dependencies:
- dependency 1
- dependency 2
- dependency 3
```
PR Close#33139
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33110
It is now possible to include a set of default ngcc configurations
that ship with ngcc out of the box. This allows ngcc to handle a
set of common packages, which are unlikely to be fixed, without
requiring the application developer to write their own configuration
for them.
Any packages that are configured at the package or project level
will override these default configurations. This allows a reasonable
level of control at the package and user level.
PR Close#33008
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.
This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.
Going forward the developer should migrate their translation files
to use the new message id format.
PR Close#32937
This PR updates Angular to compile with TypeScript 3.6 while retaining
compatibility with TS3.5. We achieve this by inserting several `as any`
casts for compatiblity around `ts.CompilerHost` APIs.
PR Close#32908
With #31953 we moved the factories for components, directives and pipes into a new field called `ngFactoryDef`, however I decided not to do it for injectables, because they needed some extra logic. These changes set up the `ngFactoryDef` for injectables as well.
For reference, the extra logic mentioned above is that for injectables we have two code paths:
1. For injectables that don't configure how they should be instantiated, we create a `factory` that proxies to `ngFactoryDef`:
```
// Source
@Injectable()
class Service {}
// Output
class Service {
static ngInjectableDef = defineInjectable({
factory: () => Service.ngFactoryFn(),
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
2. For injectables that do configure how they're created, we keep the `ngFactoryDef` and generate the factory based on the metadata:
```
// Source
@Injectable({
useValue: DEFAULT_IMPL,
})
class Service {}
// Output
export class Service {
static ngInjectableDef = defineInjectable({
factory: () => DEFAULT_IMPL,
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
PR Close#32433
Recently ng-packagr was updated to include a transform that used to be
done in tsickle (https://github.com/ng-packagr/ng-packagr/pull/1401),
where only constructor parameter decorators are emitted in tsickle's
format, not any of the other decorators.
ngcc used to extract decorators from only a single format, so once it
saw the `ctorParameters` static property it assumed the library is using
the tsickle format. Therefore, none of the `__decorate` calls were
considered. This resulted in missing decorator information, preventing
proper processing of a package.
This commit changes how decorators are extracted by always looking at
both the static properties and the `__decorate` calls, merging these
sources appropriately.
Resolves FW-1573
PR Close#32901
ngcc may need to insert public exports into the bundle's source as well
as to the entry-point's declaration file, as the Ivy compiler may need
to create import statements to internal library types. The way ngcc
knows which exports to add is through the references registry, to which
references to things that require a public export are added by the
various analysis steps that are executed.
One of these analysis steps is the augmentation of declaration files
where functions that return `ModuleWithProviders` are updated so that a
generic type argument is added that corresponds with the `NgModule` that
is actually imported. This type has to be publicly exported, so the
analyzer step has to add the module type to the references registry.
A problem occurs when `ModuleWithProviders` already has a generic type
argument, in which case no update of the declaration file is necessary.
This may happen when 1) ngcc is processing additional bundle formats, so
that the declaration file has already been updated while processing the
first bundle format, or 2) when a package is processed which already
contains the generic type in its source. In both scenarios it may occur
that the referenced `NgModule` type does not yet have a public export,
so it is crucial that a reference to the type is added to the
references registry, which ngcc failed to do.
This commit fixes the issue by always adding the referenced `NgModule`
type to the references registry, so that a public export will always be
created if necessary.
Resolves FW-1575
PR Close#32902
Previously we were looking for a global factory call that looks like:
```ts
(factory((global.ng = global.ng || {}, global.ng.common = {}), global.ng.core))"
```
but in some cases it looks like:
```ts
(global = global || self, factory((global.ng = global.ng || {}, global.ng.common = {}), global.ng.core))"
```
Note the `global = global || self` at the start of the statement.
This commit makes the test when finding the global factory
function call resilient to being in a comma list.
PR Close#32709
In ngcc's reflection host for UMD and CommonJS bundles, custom logic is
present to resolve import details of an identifier. However, this custom
logic is unable to resolve an import for an identifier inside of
declaration files, as such files use the regular ESM import syntax.
As a consequence of this limitation, ngtsc is unable to resolve
`ModuleWithProviders` imports that are declared in an external library.
In that situation, ngtsc determines the type of the actual `NgModule`
that is imported, by looking in the library's declaration files for the
generic type argument on `ModuleWithProviders`. In this process, ngtsc
resolves the import for the `ModuleWithProviders` identifier to verify
that it is indeed the `ModuleWithProviders` type from `@angular/core`.
So, when the UMD reflection host was in use this resolution would fail,
therefore no `NgModule` type could be detected.
This commit fixes the bug by using the regular import resolution logic
in addition to the custom resolution logic that is required for UMD
and CommonJS bundles.
Fixes#31791
PR Close#32619
In ESM2015 bundles, a class with decorators may be emitted as follows:
```javascript
var MyClass_1;
let MyClass = MyClass_1 = class MyClass {};
MyClass.decorators = [/* here be decorators */];
```
Such a class has two declarations: the publicly visible `let MyClass`
and the implementation `class MyClass {}` node. In #32539 a refactoring
took place to handle such classes more consistently, however the logic
to find static properties was mistakenly kept identical to its broken
state before the refactor, by looking for static properties on the
implementation symbol (the one for `class MyClass {}`) whereas the
static properties need to be obtained from the symbol corresponding with
the `let MyClass` declaration, as that is where the `decorators`
property is assigned to in the example above.
This commit fixes the behavior by looking for static properties on the
public declaration symbol. This fixes an issue where decorators were not
found for classes that do in fact have decorators, therefore preventing
the classes from being compiled for Ivy.
Fixes#31791
PR Close#32619
In ngcc's reflection hosts for compiled JS bundles, such as ESM2015,
special care needs to be taken for classes as there may be an outer
declaration (referred to as "declaration") and an inner declaration
(referred to as "implementation") for a given class. Therefore, there
will also be two `ts.Symbol`s bound per class, and ngcc needs to switch
between those declarations and symbols depending on where certain
information can be found.
Prior to this commit, the `NgccReflectionHost` interface had methods
`getClassSymbol` and `findClassSymbols` that would return a `ts.Symbol`.
These class symbols would be used to kick off compilation of components
using ngtsc, so it is important for these symbols to correspond with the
publicly visible outer declaration of the class. However, the ESM2015
reflection host used to return the `ts.Symbol` for the inner
declaration, if the class was declared as follows:
```javascript
var MyClass = class MyClass {};
```
For the above code, `Esm2015ReflectionHost.getClassSymbol` would return
the `ts.Symbol` corresponding with the `class MyClass {}` declaration,
whereas it should have corresponded with the `var MyClass` declaration.
As a consequence, no `NgModule` could be resolved for the component, so
no components/directives would be in scope for the component. This
resulted in errors during runtime.
This commit resolves the issue by introducing a `NgccClassSymbol` that
contains references to both the outer and inner `ts.Symbol`, instead of
just a single `ts.Symbol`. This avoids the unclarity of whether a
`ts.Symbol` corresponds with the outer or inner declaration.
More details can be found here: https://hackmd.io/7nkgWOFWQlSRAuIW_8KPPwFixes#32078
Closes FW-1507
PR Close#32539
This gives an overview of how much time is spent in each operation/phase
and makes it easy to do rough comparisons of how different
configurations or changes affect performance.
PR Close#32427
`ngcc` supports both synchronous and asynchronous execution. The default
mode when using `ngcc` programmatically (which is how `@angular/cli` is
using it) is synchronous. When running `ngcc` from the command line
(i.e. via the `ivy-ngcc` script), it runs in async mode.
Previously, the work would be executed in the same way in both modes.
This commit improves the performance of `ngcc` in async mode by
processing tasks in parallel on multiple processes. It uses the Node.js
built-in [`cluster` module](https://nodejs.org/api/cluster.html) to
launch a cluster of Node.js processes and take advantage of multi-core
systems.
Preliminary comparisons indicate a 1.8x to 2.6x speed improvement when
processing the angular.io app (apparently depending on the OS, number of
available cores, system load, etc.). Further investigation is needed to
better understand these numbers and identify potential areas of
improvement.
Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
Original design doc: https://hackmd.io/uYG9CJrFQZ-6FtKqpnYJAA?view
Jira issue: [FW-1460](https://angular-team.atlassian.net/browse/FW-1460)
PR Close#32427
This commit adds a new `TaskQueue` implementation that supports
executing multiple tasks in parallel (while respecting interdependencies
between them).
This new implementation is currently not used, thus the behavior of
`ngcc` is not affected by this change. The parallel `TaskQueue` will be
used in a subsequent commit that will introduce parallel task execution.
PR Close#32427
This change does not alter the current behavior, but makes it easier to
introduce `TaskQueue`s implementing different task selection algorithms,
for example to support executing multiple tasks in parallel (while
respecting interdependencies between them).
Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
PR Close#32427
Previously, `ngcc` needed to store some metadata related to the
processing of each entry-point. This metadata was stored in a `Map`, in
the form of `EntryPointProcessingMetadata` and passed around as needed.
After some recent refactorings, it turns out that this metadata (with
its only remaining property, `hasProcessedTypings`) was no longer used,
because the relevant information was extracted from other sources (such
as the `processDts` property on `Task`s).
This commit cleans up the code by removing the unused code and types.
PR Close#32427
In the past, a task's processability didn't use to be known in advance.
It was possible that a task would be created and added to the queue
during the analysis phase and then later (during the compilation phase)
it would be found out that the task (i.e. the associated format
property) was not processable.
As a result, certain checks had to be delayed, until a task's processing
had started or even until all tasks had been processed. Examples of
checks that had to be delayed are:
- Whether a task can be skipped due to `compileAllFormats: false`.
- Whether there were entry-points for which no format at all was
successfully processed.
It turns out that (as made clear by the refactoring in 9537b2ff8), once
a task starts being processed it is expected to either complete
successfully (with the associated format being processed) or throw an
error (in which case the process will exit). In other words, a task's
processability is known in advance.
This commit takes advantage of this fact by moving certain checks
earlier in the process (e.g. in the analysis phase instead of the
compilation phase), which in turn allows avoiding some unnecessary work.
More specifically:
- When `compileAllFormats` is `false`, tasks are created _only_ for the
first suitable format property for each entry-point, since the rest of
the tasks would have been skipped during the compilation phase anyway.
This has the following advantages:
1. It avoids the slight overhead of generating extraneous tasks and
then starting to process them (before realizing they should be
skipped).
2. In a potential future parallel execution mode, unnecessary tasks
might start being processed at the same time as the first (useful)
task, even if their output would be later discarded, wasting
resources. Alternatively, extra logic would have to be added to
prevent this from happening. The change in this commit avoids these
issues.
- When an entry-point is not processable, an error will be thrown
upfront without having to wait for other tasks to be processed before
failing.
PR Close#32427
Previously, `ngcc`'s programmatic API would run and complete
synchronously. This was necessary for specific usecases (such as how the
`@angular/cli` invokes `ngcc` as part of the TypeScript module
resolution process), but not for others (e.g. running `ivy-ngcc` as a
`postinstall` script).
This commit adds a new option (`async`) that enables turning on
asynchronous execution. I.e. it signals that the caller is OK with the
function call to complete asynchronously, which allows `ngcc` to
potentially run in a more efficient mode.
Currently, there is no difference in the way tasks are executed in sync
vs async mode, but this change sets the ground for adding new execution
options (that require asynchronous operation), such as processing tasks
in parallel on multiple processes.
NOTE:
When using the programmatic API, the default value for `async` is
`false`, thus retaining backwards compatibility.
When running `ngcc` from the command line (i.e. via the `ivy-ngcc`
script), it runs in async mode (to be able to take advantage of future
optimizations), but that is transparent to the caller.
PR Close#32427
This change does not alter the current behavior, but makes it easier to
introduce new types of `Executors` , for example to do the required work
in parallel (on multiple processes).
Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
PR Close#32427
To persist some of its state, `ngcc` needs to update `package.json`
files (both in memory and on disk).
This refactoring abstracts these operations behind the
`PackageJsonUpdater` interface, making it easier to orchestrate them
from different contexts (e.g. when running tasks in parallel on multiple
processes).
Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
PR Close#32427
In order to prevent `ngcc`'d packages (e.g. libraries) from getting
accidentally published, `ngcc` overwrites the `prepublishOnly` npm
script to log a warning and exit with an error. In case we want to
restore the original script (e.g. "undo" `ngcc` processing), we keep a
backup of the original `prepublishOnly` script.
Previously, running `ngcc` a second time (e.g. for a different format)
would create a backup of the overwritten `prepublishOnly` script (if
there was originally no `prepublishOnly` script). As a result, if we
ever tried to "undo" `ngcc` processing and restore the original
`prepublishOnly` script, the error-throwing script would be restored
instead.
This commit fixes it by ensuring that we only back up a `prepublishOnly`
script, iff it is not the one we created ourselves (i.e. the
error-throwing one).
PR Close#32427
Previously, any diagnostics reported during the compilation of an
entry-point would not be shown to the user, but either be ignored or
cause a hard crash in case of a `FatalDiagnosticError`. This is
unfortunate, as such error instances contain information on which code
was responsible for producing the error, whereas only its error message
would not. Therefore, it was quite hard to determine where the error
originates from.
This commit introduces behavior to deal with error diagnostics in a more
graceful way. Such diagnostics will still cause the compilation to fail,
however the error message now contains formatted diagnostics.
Closes#31977
Resolves FW-1374
PR Close#31996
If a project has nested projects that contain node_modules folders
that get processed by ngcc, it can be confusing when the ngcc
version changes since the error message is very generic:
```
The ngcc compiler has changed since the last ngcc build.
Please completely remove `node_modules` and try again.
```
This commit augments the error message with the path of
the entry-point that failed so that it is more obvious which
node_modules folder to remove.
BREAKING CHANGE:
This commit removes the public export of `hasBeenProcessed()`.
This was exported to be availble to the CLI integration but was never
used. The change to the function signature is a breaking change in itself
so we remove the function altogether to simplify and lower the public
API surface going forward.
PR Close#32396
When ngcc is called for a specific entry-point, it has to determine
which dependencies to transitively process. To accomplish this, ngcc
traverses the full import graph of the entry-points it encounters, for
which it uses a dependency host to find all module imports. Since
imports look different in the various bundle formats ngcc supports, a
specific dependency host is used depending on the information provided
in an entry-points `package.json` file. If there's not enough
information in the `package.json` file for ngcc to be able to determine
which dependency host to use, ngcc would fail with an error.
If, however, the entry-point is not compiled by Angular, it is not
necessary to process any of its dependencies. None of them can have
been compiled by Angular so ngcc does not need to know about them.
Therefore, this commit changes the behavior to avoid recursing into
dependencies of entry-points that are not compiled by Angular.
In particular, this fixes an issue for packages that have dependencies
on the `date-fns` package. This package has various secondary
entry-points that have a `package.json` file only containing a `typings`
field, without providing additional fields for ngcc to know which
dependency host to use. By not needing a dependency host at all, the
error is avoided.
Fixes#32302
PR Close#32303
Previously, `ngcc` assumed that if a format property was defined in
`package.json` it would point to a valid format-path (i.e. a file that
is an entry-point for a specific format). This is generally the case,
except if a format property is set to a non-string value (such as
`package.json`) - either directly in the `package.json` (which is unusual)
or in ngcc.config.js (which is a valid usecase, when one wants a
format property to be ignored by `ngcc`).
For example, the following config file would cause `ngcc` to throw:
```
module.exports = {
packages: {
'test-package': {
entryPoints: {
'.': {
override: {
fesm2015: undefined,
},
},
},
},
},
};
```
This commit fixes it by ensuring that only format properties whose value
is a string are considered by `ngcc`.
For reference, this regression was introduced in #32052.
Fixes#32188
PR Close#32205
During the dependency analysis phase of ngcc, imports are resolved to
files on disk according to certain module resolution rules. Since module
specifiers are typically missing extensions, or can refer to index.js
barrel files within a directory, the module resolver attempts several
postfixes when searching for a module import on disk. Module specifiers
that already include an extension, however, would fail to be resolved as
ngcc's module resolver failed to check the location on disk without
adding any postfixes.
Closes#32097
PR Close#32181
During the recursive processing of dependencies, ngcc resolves the
requested file to an actual location on disk, by testing various
extensions. For recursive calls however, the path is known to have been
resolved in the module resolver. Therefore, it is safe to move the path
resolution to the initial caller into the recursive process.
Note that this is not expected to improve the performance of ngcc, as
the call to `resolveFileWithPostfixes` is known to succeed immediately,
as the provided path is known to exist without needing to add any
postfixes. Furthermore, the FileSystem caches whether files exist, so
the additional check that we used to do was cheap.
PR Close#32181
ngcc needs to solve a unique problem when compiling typings for an
entrypoint: it must resolve a declaration within a .js file to its
representation in a .d.ts file. Since such .d.ts files can be used in deep
imports without ever being referenced from the "root" .d.ts, it's not enough
to simply match exported types to the root .d.ts. ngcc must build an index
of all .d.ts files.
Previously, this operation had a bug: it scanned all .d.ts files in the
.d.ts program, not only those within the package. Thus, if a class in the
program happened to share a name with a class exported from a dependency's
.d.ts, ngcc might accidentally modify the wrong .d.ts file, causing a
variety of issues downstream.
To fix this issue, ngcc's .d.ts scanner now limits the .d.ts files it
indexes to only those declared in the current package.
PR Close#32129
One of the compiler's tasks is to enumerate the exports of a given ES
module. This can happen for example to resolve `foo.bar` where `foo` is a
namespace import:
```typescript
import * as foo from './foo';
@NgModule({
directives: [foo.DIRECTIVES],
})
```
In this case, the compiler must enumerate the exports of `foo.ts` in order
to evaluate the expression `foo.DIRECTIVES`.
When this operation occurs under ngcc, it must deal with the different
module formats and types of exports that occur. In commonjs code, a problem
arises when certain exports are downleveled.
```typescript
export const DIRECTIVES = [
FooDir,
BarDir,
];
```
can be downleveled to:
```javascript
exports.DIRECTIVES = [
FooDir,
BarDir,
```
Previously, ngtsc and ngcc expected that any export would have an associated
`ts.Declaration` node. `export class`, `export function`, etc. all retain
`ts.Declaration`s even when downleveled. But the `export const` construct
above does not. Therefore, ngcc would not detect `DIRECTIVES` as an export
of `foo.ts`, and the evaluation of `foo.DIRECTIVES` would therefore fail.
To solve this problem, the core concept of an exported `Declaration`
according to the `ReflectionHost` API is split into a `ConcreteDeclaration`
which has a `ts.Declaration`, and an `InlineDeclaration` which instead has
a `ts.Expression`. Differentiating between these allows ngcc to return an
`InlineDeclaration` for `DIRECTIVES` and correctly keep track of this
export.
PR Close#32129
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.
Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.
The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.
Fixes#31654
PR Close#31932
Publishing of NGCC packages should not be allowed. It is easy for a user to publish an NGCC'd version of a library they have workspace libraries which are being used in a workspace application.
If a users builds a library and afterwards the application, the library will be transformed with NGCC and since NGCC taints the distributed files that should be published.
With this change we use the npm/yarn `prepublishOnly` hook to display and error and abort the process with a non zero error code when a user tries to publish an NGCC version of the package.
More info: https://docs.npmjs.com/misc/scripts
PR Close#32031
Previously, when run with `createNewEntryPointFormats: true`, `ngcc`
would only update `package.json` with the new entry-point for the first
format property that mapped to a format-path. Subsequent properties
mapping to the same format-path would be detected as processed and not
have their new entry-point format recorded in `package.json`.
This commit fixes this by ensuring `package.json` is updated for all
matching format properties, when writing an `EntryPointBundle`.
PR Close#32052
Remove the `formatProperty` property from the `EntryPointBundle`
interface, because the property is not directly related to that type.
It was only used in one place, when calling `fileWriter.writeBundle()`,
but we can pass `formatProperty` directrly to `writeBundle()`.
PR Close#32052
This refactoring more clearly separates the different phases of the work
performed by `ngcc`, setting the ground for being able to run each phase
independently in the future and improve performance via parallelization.
Inspired by/Based on @alxhub's prototype: alxhub/angular@cb631bdb1
PR Close#32052
This change basically moves some checks to happen up front and ensures
we don't try to process any more properties than we absolutely need.
(The properties would not be processed before either, but we would
consider them, before finding out that they have already been processed
or that they do not exist in the entry-point's `package.json`.)
This change should make no difference in the work done by `ngcc`, but it
transforms the code in a way that makes the actual work known earlier,
thus making it easier to parallelize the processing of each property in
the future.
PR Close#32052
In commit 7b55ba58b (part of PR #29092), the implementation of
`makeEntryPointBundle()` was changed such that it now always return
`EntryPointBundle` (and not `null`).
However, the return type was not updated and as result we continued to
unnecessarily handle `null` as a potential return value in some places.
This commit fixes the return type to reflect the implementation and
removes the redundant code that was dealing with `null`.
PR Close#32052
ngcc analyzes the dependency structure of the entrypoints it needs to
process, as the compilation of entrypoints is ordering sensitive: any
dependent upon entrypoint must be compiled before its dependees. As part
of the analysis of the dependency graph, it is detected when a
dependency of entrypoint is not installed, in which case that entrypoint
will be marked as ignored.
For libraries that work with Angular Universal to run in NodeJS, imports
into builtin NodeJS modules can be present. ngcc's dependency analyzer
can only resolve imports within the TypeScript compilation, which
builtin modules are not part of. Therefore, such imports would
erroneously cause the entrypoint to become ignored.
This commit fixes the problem by taking the NodeJS builtins into account
when dealing with missing imports.
Fixes#31522
PR Close#31872
ngcc analyzes the dependency structure of the entrypoints it needs to
process, as the compilation of entrypoints is ordering sensitive: any
dependent upon entrypoint must be compiled before its dependees. As part
of the analysis of the dependency graph, it is detected when a
dependency of entrypoint is not installed, in which case that entrypoint
will be marked as ignored.
When a target entrypoint to compile is provided, it could occur that
given target is considered ignored because one of its dependencies might
be missing. This situation was not dealt with currently, instead
resulting in a crash of ngcc.
This commit prevents the crash by taking the above scenario into account.
PR Close#31872
Previously, `ngcc` would avoid processing a `formatPath` that a property
in `package.json` mapped to, if either the _property_ was marked as
processed or the `formatPath` (i.e. the file(s)) was processed in the
same `ngcc` run (since the `compiledFormats` set was not persisted
across runs).
This could lead in a situation where a `formatPath` would be compiled
twice (if for example properties `a` and `b` both mapped to the same
`formatPath` and one would run `ngcc` for property `a` and then `b`).
This commit fixes it by ensuring that as soon as a `formatPath` has been
processed all corresponding properties are marked as processed (which
persists across `ngcc` runs).
PR Close#32003
Previously, when `ngcc` was called with `compileAllFormats === false`
(i.e. how `@angular/cli` calls it), it would not attempt to process
more properties, once the first was successfully processed. However, it
_would_ continue looping over them and perform some unnecessary
operations, such as:
- Determining the format each property maps to (which can be an
expensive operation for some properties mapping to either UMD or
CommonJS).
- Checking whether each property has been processed (which involves
checking whether any property has been processed with a different
version of `ngcc` each time).
- Potentially marking properties as processed (which involves a
file-write operation).
This commit avoids the unnecessary operations by entirely skipping
subsequent properties, once the first one has been successfully
processed. While this theoretically improves performance, it is not
expected to have any noticeable impact in practice, since the list of
`propertiesToConsider` is typically small and the most expensive
operation (marking a property as processed) has low likelihood of
happening (plus these operations are a tiny fraction of `ngcc`'s work).
PR Close#32003
Previously, when `ngcc` needed to mark multiple properties as processed
(e.g. a processed format property and `typings` or all supported
properties for a non-Angular entry-point), it would update each one
separately and write the file to disk multiple times.
This commit changes this, so that multiple properties can be updated at
once with one file-write operation. While this theoretically improves
performance (reducing the I/O operations), it is not expected to have
any noticeable impact in practice, since these operations are a tiny
fraction of `ngcc`'s work.
This change will be useful for a subsequent change to mark all
properties that map to the same `formatPath` as processed, once it is
processed the first time.
PR Close#32003
This commit changes the emit order of ngcc when a class has multiple static
fields being assigned. Previously, ngcc would emit each static field
followed immediately by any extra statements specified for that field. This
causes issues with downstream tooling such as build optimizer, which expects
all of the static fields for a class to be grouped together. ngtsc already
groups static fields and additional statements. This commit changes ngcc's
ordering to match.
PR Close#31933
In #31426 a fix was implemented to render namespaced decorator imports
correctly, however it turns out that the fix only worked when decorator
information was extracted from static properties, not when using
`__decorate` calls.
This commit fixes the issue by creating the decorator metadata with the
full decorator expression, instead of only its name.
Closes#31394
PR Close#31614
An identifier may become repeated when bundling multiple source files
into a single bundle, so bundlers have a strategy of suffixing non-unique
identifiers with a suffix like $2. Since ngcc operates on such bundles,
it needs to process potentially suffixed identifiers in their canonical
form without the suffix. The "ngx-pagination" package was previously not
compiled fully, as most decorators were not recognized.
This commit ensures that identifiers are first canonicalized by removing
the suffix, such that they are properly recognized and processed by ngcc.
Fixes#31540
PR Close#31614
Any decorator information present in TypeScript is emitted into the
generated JavaScript sources by means of `__decorate` call. This call
contains both the decorators as they existed in the original source
code, together with calls to `tslib` helpers that convey additional
information on e.g. type information and parameter decorators. These
different kinds of decorator calls were not previously distinguished on
their own, but instead all treated as `Decorator` by themselves. The
"decorators" that were actually `tslib` helper calls were conveniently
filtered out because they were not imported from `@angular/core`, a
characteristic that ngcc uses to drop certain decorators.
Note that this posed an inconsistency in ngcc when it processes
`@angular/core`'s UMD bundle, as the `tslib` helper functions have been
inlined in said bundle. Because of the inlining, the `tslib` helpers
appear to be from `@angular/core`, so ngcc would fail to drop those
apparent "decorators". This inconsistency does not currently cause any
issues, as ngtsc is specifically looking for decorators based on their
name and any remaining decorators are simply ignored.
This commit rewrites the decorator analysis of a class to occur all in a
single phase, instead of all throughout the `ReflectionHost`. This
allows to categorize the various decorate calls in a single sweep,
instead of constantly needing to filter out undesired decorate calls on
the go. As an added benefit, the computed decorator information is now
cached per class, such that subsequent reflection queries that need
decorator information can reuse the cached info.
PR Close#31614