Currently when analyzing the metadata of a directive, we bundle together the bindings from `host`
and the `HostBinding` and `HostListener` together. This can become a problem later on in the
compilation pipeline, because we try to evaluate the value of the binding, causing something like
`@HostBinding('class.foo') public true = 1;` to be treated the same as
`host: {'[class.foo]': 'true'}`.
While looking into the issue, I noticed another one that is closely related: we weren't treating
quoted property names correctly. E.g. `@HostBinding('class.foo') public "foo-bar" = 1;` was being
interpreted as `classProp('foo', ctx.foo - ctx.bar)` due to the same issue where property names
were being evaluated.
These changes resolve both of the issues by treating all `HostBinding` instance as if they're
reading the property from `this`. E.g. the `@HostBinding('class.foo') public true = 1;` from above
is now being treated as `host: {'[class.foo]': 'this.true'}` which further down the pipeline becomes
`classProp('foo', ctx.true)`. This doesn't have any payload size implications for existing code,
because we've always been prefixing implicit property reads with `ctx.`. If the property doesn't
have an identifier that can be read using dotted access, we convert it to a quoted one (e.g.
`classProp('foo', ctx['is-foo']))`.
Fixes#40220.
Fixes#40230.
Fixes#18698.
PR Close#40233
When partially compiling a component with an external template, we must
synthesize a new AST node for the string literal that holds the contents of
the external template, since we want to source-map this expression directly
back to the original external template file.
PR Close#40237
CSS supports escaping in selectors, e.g. writing `.foo:bar` will match an element with the
`foo` class and `bar` pseudo-class, but `.foo\:bar` will match the `foo:bar` class. Our
shimmed shadow DOM encapsulation always assumes that `:` means a pseudo selector
which breaks a selector like `.foo\:bar`.
These changes add some extra logic so that escaped characters in selectors are preserved.
Fixes#31844.
PR Close#40264
The `ɵɵngDeclareComponent` calls are designed to be translated to fully
AOT compiled code during a build transform, but in cases this is not
done it is still possible to compile the declaration object in the
browser using the JIT compiler. This commit adds a runtime
implementation of `ɵɵngDeclareComponent` which invokes the JIT compiler
using the declaration object, such that a compiled component definition
is made available to the Ivy runtime.
PR Close#40127
Currently we check whether a property binding contains an interpolation using a regex so
that we can throw an error. The problem is that the regex doesn't account for quotes
which means that something like `[prop]="'{{ foo }}'"` will be considered an error, even
though it's not actually an interpolation.
These changes build on top of the logic from #39826 to account for interpolation
characters inside quotes.
Fixes#39601.
PR Close#40267
The trustConstantHtml and trustConstantResourceUrl functions are only
meant to be passed constant strings extracted from Angular application
templates, as passing other strings or variables could introduce XSS
vulnerabilities.
To better protect these APIs, turn them into template tags. This makes
it possible to assert that the associated template literals do not
contain any interpolation, and thus must be constant.
Also add tests for the change to prevent regression.
PR Close#40082
The `ɵɵngDeclareDirective` calls are designed to be translated to fully
AOT compiled code during a build transform, but in cases this is not
done it is still possible to compile the declaration object in the
browser using the JIT compiler. This commit adds a runtime
implementation of `ɵɵngDeclareDirective` which invokes the JIT compiler
using the declaration object, such that a compiled directive definition
is made available to the Ivy runtime.
PR Close#40101
The types of directives and pipes that are used in a component's
template may be emitted into the partial declaration wrapped inside a
closure, which is needed when the type is declared later in the module.
This poses a problem for JIT compilation of partial declarations, as
this closure is indistinguishable from a class reference itself. To mark
the forward reference function as such, this commit changes the partial
declaration codegen to emit a `forwardRef` invocation wrapped around
the closure, which ensures that the closure is properly tagged as a
forward reference. This allows the forward reference to be treated as
such during JIT compilation.
PR Close#40117
Currently when `ɵɵtemplate` and `ɵɵelement` instructions are generated by compiler, all static attributes are
duplicated for both instructions. As a part of this duplication, i18n translation blocks for static i18n attributes
are generated twice as well, causing duplicate entries in extracted translation files (when Ivy extraction mechanisms
are used). This commit fixes this issue by introducing a cache for i18n translation blocks (for static attributes
only).
Also this commit further aligns `ɵɵtemplate` and `ɵɵelement` instruction attributes, which should help implement
more effective attributes deduplication logic.
Closes#39942.
PR Close#40077
This commit introduces an `isStructural` flag on directive metadata, which
is `true` if the directive injects `TemplateRef` (and thus is at least
theoretically usable as a structural directive). The flag is not used for
anything currently, but will be utilized by the Language Service to offer
better autocompletion results for structural directives.
PR Close#40032
This commit adds two new APIs to the `TemplateTypeChecker`:
`getPotentialDomBindings` and `getDirectiveMetadata`. Together, these will
support the Language Service in performing autocompletion of directive
inputs/outputs.
PR Close#40032
Prior to this change, the `setClassMetadata` call would be invoked
inside of an IIFE that was marked as pure. This allows the call to be
tree-shaken away in production builds, as the `setClassMetadata` call
is only present to make the original class metadata available to the
testing infrastructure. The pure marker is problematic, though, as the
`setClassMetadata` call does in fact have the side-effect of assigning
the metadata into class properties. This has worked under the assumption
that only build optimization tools perform tree-shaking, however modern
bundlers are also able to elide calls that have been marked pure so this
assumption does no longer hold. Instead, an `ngDevMode` guard is used
which still allows the call to be elided but only by tooling that is
configured to consider `ngDevMode` as constant `false` value.
PR Close#39987
Currently the compiler treats something like `{{ '{{a}}' }}` as a nested
binding and throws an error, because it doesn't account for quotes
when it looks for binding characters. These changes add a bit of
logic to skip over text inside quotes when parsing.
Fixes#39601.
PR Close#39826
This change allows the `AstObject` and `AstValue` types to provide
their represented type as a generic type argument, which is helpful
for documentation and discoverability purposes.
PR Close#39961
This allows the code generation to correspond with a type, which is
helpful for documentation and discoverability purposes. This does not
offer any type-safety with respect to the actually generated code.
PR Close#39961
Add a TaggedTemplateExpr to represent tagged template literals in
Angular's syntax tree (more specifically Expression in output_ast.ts).
Also update classes that implement ExpressionVisitor to add support for
tagged template literals in different contexts, such as JIT compilation
and conversion to JS.
Partial support for tagged template literals had already been
implemented to support the $localize tag used by Angular's i18n
framework. Where applicable, this code was refactored to support
arbitrary tags, although completely replacing the i18n-specific support
for the $localize tag with the new generic support for tagged template
literals may not be completely trivial, and is left as future work.
PR Close#39122
The partial compiler will add a version number to the objects that are
generated so that the linker can select the appropriate partial linker
class to process the metadata.
Previously this version matching was a simple number check. Now
the partial compilation writes the current Angular compiler version
into the generated metadata, and semantic version ranges are used
to select the appropriate partial linker.
PR Close#39847
This commit implements partial compilation of components, together with
linking the partial declaration into its full AOT output.
This commit does not yet enable accurate source maps into external
templates. This requires additional work to account for escape sequences
which is non-trivial. Inline templates that were represented using a
string or template literal are transplated into the partial declaration
output, so their source maps should be accurate. Note, however, that
the accuracy of source maps is not currently verified in tests; this is
also left as future work.
The golden files of partial compilation output have been updated to
reflect the generated code for components. Please note that the current
output should not yet be considered stable.
PR Close#39707
This commit is a precursor to supporting the partial compilation of
components, which leverages some of the compilation infrastructure that
is in place for directives.
PR Close#39707
Script tags, inline event handlers and other script contexts are
forbidden or stripped from Angular templates by the compiler. In the
context of Trusted Types, this leaves no sinks that require use of a
TrustedScript. This means that trustConstantScript is never used, and
can be removed.
PR Close#39554
Previously all constant values of security-sensitive attributes and
properties were promoted to Trusted Types. While this is not inherently
bad, it is also not optimal.
Use the newly added Trusted Types schema to restrict promotion to
constants that are in a Trusted Types-relevant context.
PR Close#39554
To minimize security risk (XSS in particular) in the i18n pipeline,
disallow i18n translation of attributes that are Trusted Types sinks.
Add integration tests to ensure that such sinks cannot be translated.
PR Close#39554
When parsing for i18n messages, interpolated strings are
split into `Text` and `Placeholder` pieces. The method that
does this `_visitTextWithInterpolation()` was becoming too
complex. This commit refactors that method along with some
associated functions that it uses.
PR Close#39717
When the `preserveWhitespaces` is not true, the template parser will
process the parsed AST nodes to remove excess whitespace. Since the
generated `goog.getMsg()` statements rely upon the AST nodes after
this whitespace is removed, the i18n extraction must make a second pass.
Previously this resulted in innacurrate source-spans for the i18n text and
placeholder nodes that were extracted in the second pass.
This commit fixes this by reusing the source-spans from the first pass
when extracting the nodes in the second pass.
Fixes#39671
PR Close#39717
The codebase currently contains several `noop` functions,
and they can end up in the bundle of an application.
A recent commit 6fbe21941d tipped us off
as it introduced several `noop` occurrences in the golden symbol files.
After investigating with @petebacondarwin,
we decided to remove the duplicated functions.
This probably shaves only a few bytes,
but this commit removes the duplicated functions,
by always using the one in `core/src/utils/noop`.
PR Close#39761
ngtsc has a robust suite of testing utilities, designed for in-memory
testing of a TypeScript compiler. Previously these utilities lived in the
`test` directory for the compiler-cli package.
This commit moves those utilities to an `ngtsc/testing` package, enabling
them to be depended on separately and opening the door for using them from
the upcoming language server testing infrastructure.
As part of this refactoring, the `fake_core` package (a lightweight API
replacement for @angular/core) is expanded to include functionality needed
for Language Service test use cases.
PR Close#39594
The result of utf-8 encoding a string was represented in a string, where
each individual character represented a single byte according to its
character code. All usages of this data were interested in the byte
itself, so this required conversion from a character back to its code.
This commit simply stores the individual bytes in array to avoid the
conversion. This yields a ~10% performance improvement for i18n message
ID computation.
PR Close#39694
Message ID computation makes extensive use of big integer
multiplications in order to translate the message's fingerprint into
a numerical representation. In large compilations with heavy use of i18n
this was showing up high in profiler sessions.
There are two factors contributing to the bottleneck:
1. a suboptimal big integer representation using strings, which requires
repeated allocation and conversion from a character to numeric digits
and back.
2. repeated computation of the necessary base-256 exponents and their
multiplication factors.
The first bottleneck is addressed using a representation that uses an
array of individual digits. This avoids repeated conversion and
allocation overhead is also greatly reduced, as adding two big integers
can now be done in-place with virtually no memory allocations.
The second point is addressed by a memoized exponentiation pool to
optimize the multiplication of a base-256 exponent.
As an additional optimization are the two 32-bit words now converted to
decimal per word, instead of going through an intermediate byte buffer
and doing the decimal conversion per byte.
The results of these optimizations depend a lot on the number of i18n
messages for which a message should be computed. Benchmarks have shown
that computing message IDs is now ~6x faster for 1,000 messages, ~14x
faster for 10,000 messages, and ~24x faster for 100,000 messages.
PR Close#39694
JIT needs to identify which type is `ChangeDetectorRef`. It was doing so
by importing `ChangeDetectorRef` and than comparing the types. This creates
circular dependency as well as prevents tree shaking. The new solution is
to brand the class with `__ChangeDetectorRef__` so that it can be identified
without creating circular dependency.
PR Close#39621
Similar to #39613, #39609, and #38898, we should store the `keySpan` for
Reference nodes so that we can accurately map from a template node to a
span in the original file. This is most notably an issue at the moment
for directive references `#ref="exportAs"`. The current behavior for the
language service when requesting information for the reference
is that it will return a text span that results in
highlighting the entire source when it should only highlight "ref" (test
added for this case as well).
PR Close#39616
Though we currently have the knowledge of where the `key` for an
event binding appears during parsing, we do not propagate this
information to the output AST. This means that once we produce the
template AST, we have no way of mapping a template position to the key
span alone. The best we can currently do is map back to the
`sourceSpan`. This presents problems downstream, specifically for the
language service, where we cannot provide correct information about a
position in a template because the AST is not granular enough.
This is essentially identical to the change from #38898, but for event
bindings rather than input bindings.
PR Close#39609
Similar to #39609 and #38898, though we currently have the knowledge of where the key for an
attribute appears during parsing, we do not propagate this
information to the output AST. This means that once we produce the
template AST, we have no way of mapping a template position to the key
span alone. The best we can currently do is map back to the
sourceSpan. This presents problems downstream, specifically for the
language service, where we cannot provide correct information about a
position in a template because the AST is not granular enough.
PR Close#39613
Tokenized text node may have leading whitespace skipped from their
source-span. But the source-span is used to compute where there are
interpolated blocks, resulting in placeholder nodes whose source-spans
are offset by the amount of skipped characters.
This fix uses the `fullStart` location of text source-spans for computing
the source-span of placeholders, so that they are accurate.
Fixes#39195
PR Close#39486
This commit ensures that when leading whitespace is skipped by
the tokenizer, the original start location (before skipping) is captured
in the `fullStart` property of the token's source-span.
PR Close#39486
The lexer is able to skip leading trivia in the `start` location of tokens.
This makes the source-span more friendly since things like elements
appear to begin at the start of the opening tag, rather than at the
start of any leading whitespace, which could include newlines.
But some tooling requires the full source-span to be available, such
as when tokenizing a text span into an Angular expression.
This commit simply adds the `fullStart` location to the `ParseSourceSpan`
class, and ensures that places where such spans are cloned, this
property flows through too.
PR Close#39486
In an i18n message, two placeholders next to each other must have
an "empty" message-part to separate them. Previously, the source-span
for this message-part was pointing to the wrong original location.
This caused problems in the generated source-maps and lead to extracted
i18n messages from being rendered incorrectly.
PR Close#39486
For consistency with other generated code, the partial declaration
functions are renamed to use the `ɵɵ` prefix which indicates that it is
generated API.
This commit also removes the declaration from the public API golden
file, as it's not yet considered stable at this point. Once the linker
is finalized will these declaration function be included into the golden
file.
PR Close#39518
This commit implements partial code generation for directives, which
will be transformed by the linker plugin to fully AOT compiled code in
follow-up work.
PR Close#39518
Currently expressions `$event.foo()` and `this.$event.foo()`, as well as `$any(foo)` and
`this.$any(foo)`, are treated as the same expression by the compiler, because `this` is considered
the same implicit receiver as when the receiver is omitted. This introduces the following issues:
1. Any time something called `$any` is used, it'll be stripped away, leaving only the first parameter.
2. If something called `$event` is used anywhere in a template, it'll be preserved as `$event`,
rather than being rewritten to `ctx.$event`, causing the value to undefined at runtime. This
applies to listener, property and text bindings.
These changes resolve the first issue and part of the second one by preserving anything that
is accessed through `this`, even if it's one of the "special" ones like `$any` or `$event`.
Furthermore, these changes only expose the `$event` global variable inside event listeners,
whereas previously it was available everywhere.
Fixes#30278.
PR Close#39323
To support recovery of malformed binding property names like `([a)`,
`[a`, or `()`, the binding parser needs to be more permissive w.r.t. the
kinds of bindings it can detect. This is difficult to do maintainably
with a regex, but is trivial with a "hand-rolled" string parser. This
commit refactors render3's binding attribute parsing to use this method
for multi-delimited bindings (namely via the `()`, `[]`, and `[()]`)
syntax, making the way recovery of malformed bindings in a future patch.
Note that we can keep using a regex for prefix-only binding syntax
(e.g. `bind-`, `ref-`) because validation of the binding is complete
once we have matched the prefix, and the only thing left to do is check
that the binding identifier is non-empty, which is trivial.
Part of #38596
PR Close#39375
This is follow-up from [an earlier discussion](https://github.com/angular/angular/pull/39408#discussion_r511908358).
After some testing, it looks like the type of `Element.attributes` was correct in specifying that it
only has `TextAttribute` instances. This means that the extra checks that filter out `BoundAttribute`
instances from the array isn't necessary. There is another loop a bit further down that actually
extracts the bound i18n attributes.
PR Close#39498
This commit handles the following cases:
- incomplete pipes in a pipe chain
- incomplete arguments in a pipe chain
- incomplete arguments provided to a pipe
- nested pipes
The idea is to unconditionally recover on the presence of a pipe, which
should be okay because expression parsing can be independently between
pipes.
PR Close#39437
Angular-internal type definitions for Trusted Types were added in #39211.
When compiled using the Closure compiler with certain optimization
flags, identifiers from these type definitions (such as createPolicy)
are currently uglified and renamed to shorter strings. This causes
Angular applications compiled in this way to fail to create a Trusted
Types policy, and fall bock to using strings.
To fix this, mark the internal Trusted Types definitions as declarations
using the "declare" keyword. Also convert types to interfaces, for
the reasons explained in https://ncjamieson.com/prefer-interfaces/
PR Close#39471