This commit builds out enough of the JIT compiler to render
//packages/core/test/bundling/todo, and allows the tests to run in
JIT mode.
To play with the app, run:
bazel run --define=compile=jit //packages/core/test/bundling/todo:prodserver
PR Close#24138
In ngIvy directives matching (determining which directives are active based
on a CSS seletor) happens at runtime. This means that runtime needs to have
enough context to match directives. This PR takes care of cases where a directive's
selector should match bindings (ex. [foo]="exp") and event handlers (ex. (out)="do()").
In the mentioned cases we need to have binding / output "attributes" for directive's
CSS selector matching purposes. At the same time those are not regular attributes and
as such should not be reflected in the DOM.
Closes#23706
PR Close#23991
Allows to write:
const fixture = TestBed
.overridePipe(DisplayNamePipe, { set: { pure: false } })
.createComponent(MenuComponent);
when you only want to set the `pure` metadata,
instead of currently:
const fixture = TestBed
.overridePipe(DisplayNamePipe, { set: { name: 'displayName', pure: false } })
.createComponent(MenuComponent);
which forces you to redefine the name of the pipe even if it is useless.
Fixes#24102
PR Close#24103
Bazel has a restriction that a single output (eg. a compiled version of
//packages/common) can only be produced by a single rule. This precludes
the Angular repo from having multiple rules that build the same code. And
the complexity of having a single rule produce multiple outputs (eg. an
ngc-compiled version of //packages/common and an Ivy-enabled version) is
too high.
Additionally, the Angular repo has lots of existing tests which could be
executed as-is under Ivy. Such testing is very valuable, and it would be
nice to share not only the code, but the dependency graph / build config
as well.
Thus, this change introduces a --define flag 'compile' with three potential
values. When --define=compile=X is set, the entire build system runs in a
particular mode - the behavior of all existing targets is controlled by
the flag. This allows us to reuse our entire build structure for testing
in a variety of different manners. The flag has three possible settings:
* legacy (the default): the traditional View Engine (ngc) build
* local: runs the prototype ngtsc compiler, which does not rely on global
analysis
* jit: runs ngtsc in a mode which executes tsickle, but excludes the
Angular related transforms, which approximates the behavior of plain
tsc. This allows the main packages such as common to be tested with
the JIT compiler.
Additionally, the ivy_ng_module() rule still exists and runs ngc in a mode
where Ivy-compiled output is produced from global analysis information, as
a stopgap while ngtsc is being developed.
PR Close#24056
Short-circuitable expressions (using ternary & binary operators) could not use
the regular binding mechanism as it relies on the bindings being checked every
single time - the index is incremented as part of checking the bindings.
Then for pure function kind of bindings we use a different mechanism with a
fixed index. As such short circuiting a binding check does not mess with the
expected binding index.
Note that all pure function bindings are handled the same wether or not they
actually are short-circuitable. This allows to keep the compiler and compiled
code simple - and there is no runtime perf cost anyway.
PR Close#24039
This commit adds a mechanism by which the @angular/core annotations
for @Component, @Injectable, and @NgModule become decorators which,
when executed at runtime, trigger just-in-time compilation of their
associated types. The activation of these decorators is configured
by the ivy_switch mechanism, ensuring that the Ivy JIT engine does
not get included in Angular bundles unless specifically requested.
PR Close#23833
Previously, ngOnDestroy was only called on services which were statically
determined to have ngOnDestroy methods. In some cases, such as with services
instantiated via factory functions, it's not statically known that the service
has an ngOnDestroy method.
This commit changes the runtime to look for ngOnDestroy when instantiating
all DI tokens, and to call the method if it's present.
Fixes#22466Fixes#22240Fixes#14818
PR Close#23755
Prior to this patch, if an element is queried and animated for 0 seconds
(just a style() call and nothing else) then the styles applied would not
be properly cleaned up due to their camelCased nature.
PR Close#23633
Fix a corner case where eager providers were getting constructed twice if the provider was requested before the initialization of the NgModule is complete.
PR Close#23559
The bug fixed here steams from the fact that we are traversing too far up
in the views tree hierarchy in the destroyViewTree function.
The logic in destroyViewTree is off if we start removal at an embedded view
without any child views. For such a case we should just clean up (cleanUpView)
this one view without paying attention to next / parent views.
PR Close#23482
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an opaque token.
For this reson why declare the return value of `defineInjectable` as `never`.
PR Close#23383
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an `OpaqueToken`.
By prefixing the type with `ɵ` we are communicating the the outside world that
the value is not public API and is subject to change without backward compatibility.
PR Close#23371