Prior to this change we processed binding expression (including bindings with pipes) in i18n attributes before we generate update instruction. As a result, slot offsets for pipeBind instructions were calculated incorrectly. Now we perform binding expression processing when we generate "update block" instructions, so offsets are calculated correctly.
PR Close#30573
Currently the `@angular/compiler-cli` compliance tests sometimes do
not throw an exception if the expected output does not match the
generated JavaScript output. This can happen for the following cases:
1. Expected code includes character that is not part of known alphabet
(e.g. `Δ` is still used in a new compliance test after rebasing a PR)
2. Expected code asserts that a string literal matches a string with
escaped quotes. e.g. expects `const $var$ = "\"quoted\"";`)
PR Close#30597
There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character
So back to the frog eyes we go.
```
__
/ɵɵ\
( -- ) - I am ineffable. I am forever.
_/ \_
/ \ / \
== == ==
```
PR Close#30546
Previously we defensively wrapped expressions in case they ran afoul of
precedence rules. For example, it would be easy to create the TS AST structure
Call(Ternary(a, b, c)), but might result in printed code of:
```
a ? b : c()
```
Whereas the actual structure we meant to generate is:
```
(a ? b : c)()
```
However the TypeScript renderer appears to be clever enough to provide
parenthesis as necessary.
This commit removes these defensive paraenthesis in the cases of binary
and ternary operations.
FW-1273
PR Close#30349
A structural directive can specify a template guard for an input, such that
the type of that input's binding can be narrowed based on the guard's return
type. Previously, such template guards could only be methods, of which an
invocation would be inserted into the type-check block (TCB). For `NgIf`,
the template guard narrowed the type of its expression to be `NonNullable`
using the following declaration:
```typescript
export declare class NgIf {
static ngTemplateGuard_ngIf<E>(dir: NgIf, expr: E): expr is NonNullable<E>
}
```
This works fine for usages such as `*ngIf="person"` but starts to introduce
false-positives when e.g. an explicit non-null check like
`*ngIf="person !== null"` is used, as the method invocation in the TCB
would not have the desired effect of narrowing `person` to become
non-nullable:
```typescript
if (NgIf.ngTemplateGuard_ngIf(directive, ctx.person !== null)) {
// Usages of `ctx.person` within this block would
// not have been narrowed to be non-nullable.
}
```
This commit introduces a new strategy for template guards to allow for the
binding expression itself to be used as template guard in the TCB. Now,
the TCB generated for `*ngIf="person !== null"` would look as follows:
```typescript
if (ctx.person !== null) {
// This time `ctx.person` will successfully have
// been narrowed to be non-nullable.
}
```
This strategy can be activated by declaring the template guard as a
property declaration with `'binding'` as literal return type.
See #30235 for an example where this led to a false positive.
PR Close#30248
Currently in Ivy `NgModule` registration happens when the class is declared, however this is inconsistent with ViewEngine and requires extra generated code. These changes remove the generated code for `registerModuleFactory`, pass the id through to the `ngModuleDef` and do the module registration inside `NgModuleFactory.create`.
This PR resolves FW-1285.
PR Close#30244
```
//packages/compiler-cli/test:ngc
//packages/compiler/test:test
```
This also address `node_modules` to the ignored paths for ngc compiler as otherwise the `ready` is never fired
Partially addresses #29785
PR Close#30146
Now that the dependent files and compilation scopes are being tracked in
the incremental state, we can skip analysing and emitting source files if
none of their dependent files have changed since the last compile.
The computation of what files (and their dependencies) are unchanged is
computed during reconciliation.
This commit also removes the previous emission skipping logic, since this
approach covers those cases already.
PR Close#30238
This is the final patch to migrate the Angular styling code to have a
smaller instruction set in preparation for the runtime refactor. All
styling-related instructions now work both in template and hostBindings
functions and do not use `element` as a prefix for their names:
BEFORE:
elementStyling()
elementStyleProp()
elementClassProp()
elementStyleMap()
elementClassMap()
elementStylingApply()
AFTER:
styling()
styleProp()
classProp()
styleMap()
classMap()
stylingApply()
PR Close#30318
This patch removes all host-specific styling instructions in favor of
using element-level instructions instead. Because of the previous
patches that made sure `select(n)` worked between styling calls, all
host level instructions are not needed anymore. This patch changes each
of those instruction calls to use any of the `elementStyling*`,
`elementStyle*` and `elementClass*` styling instructions instead.
PR Close#30336
This patch is one commit of many patches that will unify all styling instructions
across both template-level bindings and host-level bindings. This patch in particular
removes the `elementIndex` param because it is already set prior to each styling
instruction via the `select(n)` instruction.
PR Close#30313
Prior to this patch, the `select(n)` instruction would only be generated
when property bindings are encountered which meant that styling-related
bindings were skipped. This patch ensures that all styling-related bindings
(i.e. class and style bindings) are always prepended with a `select()`
instruction prior to being generated in AOT.
PR Close#30311
This patch breaks up the existing `elementStylingMap` into
`elementClassMap` and `elementStyleMap` instructions. It also breaks
apart `hostStlyingMap` into `hostClassMap` and `hostStyleMap`
instructions. This change allows for better tree-shaking and reduces
the complexity of the styling algorithm code for `[style]` and `[class]`
bindings.
PR Close#30293
Fixes `HostBinding` and `HostListener` declarations not being inherited from base classes that don't have an Angular decorator.
This PR resolves FW-1275.
PR Close#30158
- Extracts and documents code that will be common to interpolation instructions
- Ensures that binding indices are updated at the proper time during compilation
- Adds additional tests
Related #30011
PR Close#30129
ngtsc generates type constructors which infer the type of a directive based
on its inputs. Previously, a bug existed where this inference would fail in
the case of 'any' input values. For example, the inference of NgForOf fails
when an 'any' is provided, as it causes TypeScript to attempt to solve:
T[] = any
In this case, T gets inferred as {}, the empty object type, which is not
desirable.
The fix is to assign generic types in type constructors a default type of
'any', which TypeScript uses instead of {} when inference fails.
PR Close#30094
ngtsc previously could attempt to reuse the main ts.Program twice. This
occurred when template type-checking was enabled and then an incremental
build was performed. This breaks a TypeScript invariant - ts.Programs can
only be reused once.
The creation of the template type-checking program reuses the main program,
rendering it moot. Then, on the next incremental build the main program
would be subject to reuse again, which would crash inside TypeScript.
This commit fixes the issue by reusing the template type-checking program
from the previous run on the next incremental build. Since under normal
circumstances the files in the type-checking program aren't changed, this
should be just as fast.
Testing strategy: a test is added in the incremental_spec which validates
that program reuse with type-checking turned on does not crash the compiler.
Fixes#30079
PR Close#30090
Fixes view and content queries not being inherited in Ivy, if the base class hasn't been annotated with an Angular decorator (e.g. `Component` or `Directive`).
Also reworks the way the `ngBaseDef` is created so that it is added at the same point as the queries, rather than inside of the `Input` and `Output` decorators.
This PR partially resolves FW-1275. Support for host bindings will be added in a follow-up, because this PR is somewhat large as it is.
PR Close#30015
Prior to this commit, the check that verifies correct "id" field type was too strict and didn't allow `module.id` as @NgModule's "id" field value. This change adds a special handling for `module.id` and uses it as id of @NgModule if specified.
PR Close#30040
The compiler uses metadata to represent what it statically knows about
various expressions in a program. Occasionally, expressions in the program
for which metadata is extracted may contain sub-expressions which are not
representable in metadata. One such construct is an arrow function.
The compiler does not always need to understand such expressions completely.
For example, for a provider defined with `useValue`, the compiler does not
need to understand the value at all, only the outer provider definition. In
this case, the compiler employs a technique known as "expression lowering",
where it rewrites the provider expression into one that can be represented
in metadata. Chiefly, this involves extracting out the dynamic part (the
`useValue` expression) into an exported constant.
Lowering is applied through a heuristic, which considers the containing
statement as well as the field name of the expression.
Previously, this heuristic was not completely accurate in the case of
route definitions and the `loadChildren` field, which is lowered. If the
route definition using `loadChildren` existed inside a decorator invocation,
lowering was performed correctly. However, if it existed inside a standalone
variable declaration with an export keyword, the heuristic would conclude
that lowering was unnecessary. For ordinary providers this is true; however
the compiler attempts to fully understand the ROUTES token and thus even if
an array of routes is declared in an exported variable, any `loadChildren`
expressions within still need to be lowered.
This commit enables lowering of already exported variables under a limited
set of conditions (where the initializer expression is of a specific form).
This should enable the use of `loadChildren` in route definitions.
PR Close#30038
Previously, a template's context name would only be included in an embedded
template function if the element that the template was declared on has a
tag name. This is generally true for elements, except for `ng-content`
that does not have a tag name. By omitting the context name the compiler
could introduce duplicate template function names, which would fail at runtime.
This commit fixes the behavior by always including the context name in the
template function's name, regardless of tag name.
Resolves FW-1272
PR Close#30025
Fixes Ivy throwing an error because it tries to generate styling instructions for empty `style` and `class` bindings.
This PR resolves FW-1274.
PR Close#30024
Template type-checking is enabled by default in the View Engine compiler.
The feature in Ivy is not quite ready for this yet, so this flag will
temporarily control whether templates are type-checked in ngtsc.
The goal is to remove this flag after rolling out template type-checking in
google3 in Ivy mode, and making sure the feature is as compatible with the
View Engine implementation as possible.
Initially, the default value of the flag will leave checking disabled.
PR Close#29698
This commit adds support for template type-checking a pipe binding which
previously was not handled by the type-checking engine. In compatibility
mode, the arguments to transform() are not checked and the type returned
by a pipe is 'any'. In full type-checking mode, the transform() method's
type signature is used to check the pipe usage and infer the return type
of the pipe.
Testing strategy: TCB tests included.
PR Close#29698
The template type-checking engine previously would assemble a type-checking
program by inserting Type Check Blocks (TCBs) into existing user files. This
approach proved expensive, as TypeScript has to re-parse and re-type-check
those files when processing the type-checking program.
Instead, a far more performant approach is to augment the program with a
single type-checking file, into which all TCBs are generated. Additionally,
type constructors are also inlined into this file.
This is not always possible - both TCBs and type constructors can sometimes
require inlining into user code, particularly if bound generic type
parameters are present, so the approach taken is actually a hybrid. These
operations are inlined if necessary, but are otherwise generated in a single
file.
It is critically important that the original program also include an empty
version of the type-checking file, otherwise the shape of the two programs
will be different and TypeScript will throw away all the old program
information. This leads to a painfully slow type checking pass, on the same
order as the original program creation. A shim to generate this file in the
original program is therefore added.
Testing strategy: this commit is largely a refactor with no externally
observable behavioral differences, and thus no tests are needed.
PR Close#29698
Previously the template type-checking code only considered the metadata of
directive classes actually referenced in the template. If those directives
had base classes, any inputs/outputs/etc of the base classes were not
tracked when generating the TCB. This resulted in bindings to those inputs
being incorrectly attributed to the host component or element.
This commit uses the new metadata package to follow directive inheritance
chains and use the full metadata for a directive for TCB generation.
Testing strategy: Template type-checking tests included.
PR Close#29698
This commit adds registration of AOT compiled NgModules that have 'id'
properties set in their metadata. Such modules have a call to
registerNgModuleType() emitted as part of compilation.
The JIT behavior of this code is already in place.
This is required for module loading systems (such as g3) which rely on
getModuleFactory().
PR Close#29980
Previously, ngtsc would fail to resolve `forwardRef` calls if they
contained additional parenthesis or casts. This commit changes the
behavior to first unwrap the AST nodes to see past such insignificant
nodes, resolving the issue.
Fixes#29639
PR Close#29886
Prior to this change, element attributes annotated with i18n- prefix were removed from element attribute list and processed separately by i18n-specific logic. This behavior is causing issues with directive matching, since attributes are not present in the list of attrs for matching purposes. This commit updates i18n logic to retain attributes in the main attribute list, thus allowing directive matching logic to work correctly.
PR Close#29856
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
So far using runtime i18n with ivy meant that you needed to use Closure and `goog.getMsg` (or a polyfill). This PR changes the compiler to output both closure & non-closure code, while the unused option will be tree-shaken by minifiers.
This means that if you use the Angular CLI with ivy and load a translations file, you can use i18n and the application will not throw at runtime.
For now it will not translate your application, but at least you can try ivy without having to remove all of your i18n code and configuration.
PR Close#28689
Currently in Ivy we pass both the raw and parsed selectors to the projectionDef instruction, because the parsed selectors are used to match most nodes, whereas the raw ones are used to match against nodes with the ngProjectAs attribute. The raw selectors add a fair bit of code that won't be used in most cases, because ngProjectAs is somewhat rare.
These changes rework the compiler not to output the raw selectors in the projectionDef, but to parse the selector in ngProjectAs and to store it on the TAttributes. The logic for matching has also been changed so that it matches the pre-parsed ngProjectAs selector against the list of projection selectors.
PR Close#29578
The defineInjector function specifies its providers and imports array to
be optional, so if no providers/imports are present these keys may be
omitted. This commit updates the compiler to only generate the keys when
necessary.
PR Close#29598
Prior to this change, a module's imports and exports would be used verbatim
as an injectors' imports. This is detrimental for tree-shaking, as a
module's exports could reference declarations that would then prevent such
declarations from being eligible for tree-shaking.
Since an injector actually only needs NgModule references as its imports,
we may safely filter out any declarations from the list of module exports.
This makes them eligible for tree-shaking once again.
PR Close#29598
Prior to this change, all module metadata would be included in the
`defineNgModule` call that is set as the `ngModuleDef` field of module
types. Part of the metadata is scope information like declarations,
imports and exports that is used for computing the transitive module
scope in JIT environments, preventing those references from being
tree-shaken for production builds.
This change moves the metadata for scope computations to a pure function
call that patches the scope references onto the module type. Because the
function is marked pure, it may be tree-shaken out during production builds
such that references to declarations and exports are dropped, which in turn
allows for tree-shaken any declaration that is not otherwise referenced.
Fixes#28077, FW-1035
PR Close#29598
Currently there is no support in ngtsc for imports of the form:
```
import * as core from `@angular/core`
export function forRoot(): core.ModuleWithProviders;
```
This commit modifies the `ReflectionHost.getImportOfIdentifier(id)`
method, so that it supports this kind of return type.
PR Close#27675
This commit introduces a mechanism for incremental compilation to the ngtsc
compiler.
Previously, incremental information was used in the construction of the
ts.Program for subsequent compilations, but was not used in ngtsc itself.
This commit adds an IncrementalState class, which tracks state between ngtsc
compilations. Currently, this supports skipping the TypeScript emit step
when the compiler can prove the contents of emit have not changed.
This is implemented for @Injectables as well as for files which don't
contain any Angular decorated types. These are the only files which can be
proven to be safe today.
See ngtsc/incremental/README.md for more details.
PR Close#29380
This commit adds support for compiling the same program repeatedly in a way
that's similar to how incremental builds work in a tool such as the CLI.
* support is added to the compiler entrypoint for reuse of the Program
object between compilations. This is the basis of the compiler's
incremental compilation model.
* support is added to wrap the CompilerHost the compiler creates and cache
ts.SourceFiles in between compilations.
* support is added to track when files are emitted, for assertion purposes.
* an 'exclude' section is added to the base tsconfig to prevent .d.ts
outputs from the first compilation from becoming inputs to any subsequent
compilations.
PR Close#29380
Currently, ngtsc decides to use remote scoping if the compilation of a
component may create a cyclic import. This happens if there are two
components in a scope (say, A and B) and A directly uses B. During
compilation of B ngtsc will then note that if B were to use A, a cycle would
be generated, and so it will opt to use remote scoping for B.
ngtsc already uses the R3TargetBinder to correctly track the imports that
are actually required, for future cycle tracking. This commit expands that
usage to not trigger remote scoping unless B actually does consume A in its
template.
PR Close#29404
Currently when building an Angular project with `ngtsc`
and `flatModuleOutFile` enabled, the Ngtsc build will fail
if there are multiple source files as root file names.
Ngtsc and NGC currently determine the entry-point for multiple
root file names by looking for files ending with `/index.ts`.
This functionality is technically deprecated, but still supported
and currently breaks on Windows as the root file names are not
guaranteed to be normalized POSIX-like paths.
In order to make this logic more reliable in the future, this commit
also switches the shim generators and entry-point logic to the branded
path types. This ensures that we don't break this in the future.
PR Close#29453