The `:` char is used as a metadata marker in `$localize` messages.
If this char appears in the metadata it must be escaped, as `\:`.
Previously, although the `:` char was being escaped, the TS AST
being generated was not correct and so it was being output double
escaped, which meant that it appeared in the rendered message.
As of TS 3.6.2 the "raw" string can be specified when creating tagged
template AST nodes, so it is possible to correct this.
PR Close#33820
Prior to this change, namespaced elements such as SVG elements would not
participate correctly in directive matching as their namespace was not
ignored, which was the case with the View Engine compiler. This led to
incorrect behavior at runtime and template type checking.
This commit resolved the issue by ignoring the namespace of elements and
attributes like they were in View Engine.
Fixes#32061
PR Close#33555
When computing i18n messages for templates there are two passes.
This is because messages must be computed before any whitespace
is removed. Then on a second pass, the messages must be recreated
but reusing the message ids from the first pass.
Previously ICUs were losing their legacy ids that had been computed
via the first pass. This commit fixes that by keeping track of the
message from the first pass (`previousMessage`) for ICU placeholder
nodes.
// FW-1637
PR Close#33318
In an attempt to be compatible with previous translation files
the Angular compiler was generating instructions that always
included the message id. This was because it was not possible
to accurately re-generate the id from the calls to `$localize()` alone.
In line with https://hackmd.io/EQF4_-atSXK4XWg8eAha2g this
commit changes the compiler so that it only renders ids if they are
"custom" ones provided by the template author.
NOTE:
When translating messages generated by the Angular compiler
from i18n tags in templates, the `$localize.translate()` function
will compute message ids, if no custom id is provided, using a
common digest function that only relies upon the information
available in the `$localize()` calls.
This computed message id will not be the same as the message
ids stored in legacy translation files. Such files will need to be
migrated to use the new common digest function.
This only affects developers who have been trialling `$localize`, have
been calling `loadTranslations()`, and are not exclusively using custom
ids in their templates.
PR Close#32867
Metadata blocks are delimited by colons. Previously the code naively just
looked for the next colon in the string as the end marker.
This commit supports escaping colons within the metadata content.
The Angular compiler has been updated to add escaping as required.
PR Close#32867
Previously the metadata and placeholder blocks were serialized in
a variety of places. Moreover the code for creating the `LocalizedString`
AST node was doing serialization, which break the separation of concerns.
Now this is all done by the code that renders the AST and is refactored into
helper functions to avoid repeating the behaviour.
PR Close#32867
Now that the `$localize` translations are `MessageId` based the
compiler must render `MessageId`s in its generated `$localize` code.
This is because the `MessageId` used by the compiler is computed
from information that does not get passed through to the `$localize`
tagged string.
For example, the generated code for the following template
```html
<div id="static" i18n-title="m|d" title="introduction"></div>
```
will contain these localization statements
```ts
if (ngI18nClosureMode) {
/**
* @desc d
* @meaning m
*/
const MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1 = goog.getMsg("introduction");
I18N_1 = MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1;
}
else {
I18N_1 = $localize \`:m|d@@8809028065680254561:introduction\`;
}
```
Since `$localize` is not able to accurately regenerate the source-message
(and so the `MessageId`) from the generated code, it must rely upon the
`MessageId` being provided explicitly in the generated code.
The compiler now prepends all localized messages with a "metadata block"
containing the id (and the meaning and description if defined).
Note that this metadata block will also allow translation file extraction
from the compiled code - rather than relying on the legacy ViewEngine
extraction code. (This will be implemented post-v9).
Although these metadata blocks add to the initial code size, compile-time
inlining will completely remove these strings and so will not impact on
production bundle size.
PR Close#32594
The `goog.getMsg()` function requires placeholder names to be camelCased.
This is not the case for `$localize`. Here placeholder names need
match what is serialized to translation files.
Specifically such placeholder names keep their casing but have all characters
that are not in `a-z`, `A-Z`, `0-9` and `_` converted to `_`.
PR Close#32509
This commit changes the Angular compiler (ivy-only) to generate `$localize`
tagged strings for component templates that use `i18n` attributes.
BREAKING CHANGE
Since `$localize` is a global function, it must be included in any applications
that use i18n. This is achieved by importing the `@angular/localize` package
into an appropriate bundle, where it will be executed before the renderer
needs to call `$localize`. For CLI based projects, this is best done in
the `polyfills.ts` file.
```ts
import '@angular/localize';
```
For non-CLI applications this could be added as a script to the index.html
file or another suitable script file.
PR Close#31609
Currently, template expressions and statements have their location
recorded relative to the HTML element they are in, with no handle to
absolute location in a source file except for a line/column location.
However, the line/column location is also not entirely accurate, as it
points an entire semantic expression, and not necessarily the start of
an expression recorded by the expression parser.
To support record of the source code expressions originate from, add a
new `sourceSpan` field to `ASTWithSource` that records the absolute byte
offset of an expression within a source code.
Implement part 2 of [refactoring template parsing for
stability](https://hackmd.io/@X3ECPVy-RCuVfba-pnvIpw/BkDUxaW84/%2FMA1oxh6jRXqSmZBcLfYdyw?type=book).
PR Close#31391
Since `goog.getMsg` does not process ICUs (post-processing is required via goog.i18n.MessageFormat, https://google.github.io/closure-library/api/goog.i18n.MessageFormat.html) and placeholder format used for ICUs and regular messages inside `goog.getMsg` are different, the current implementation (that assumed the same placeholder format) needs to be updated. This commit updates placeholder format used inside ICUs from `{$placeholder}` to `{PLACEHOLDER}` to better align with Closure. ICU placeholders (that were left as is prior to this commit) are now replaced with actual values in post-processing step (inside `i18nPostprocess`).
PR Close#31459
Previously, Template.templateAttrs was introduced to capture attribute
bindings which originated from microsyntax (e.g. bindings in *ngFor="...").
This means that a Template node can have two different structures, depending
on whether it originated from microsyntax or from a literal <ng-template>.
In the literal case, the node behaves much like an Element node, it has
attributes, inputs, and outputs which determine which directives apply.
In the microsyntax case, though, only the templateAttrs should be used
to determine which directives apply.
Previously, both the t2_binder and the TemplateDefinitionBuilder were using
the wrong set of attributes to match directives - combining the attributes,
inputs, outputs, and templateAttrs of the Template node regardless of its
origin. In the TDB's case this wasn't a problem, since the TDB collects a
global Set of directives used in the template, so it didn't matter whether
the directive was also recognized on the <ng-template>. t2_binder's API
distinguishes between directives on specific nodes, though, so it's more
sensitive to mismatching.
In particular, this showed up as an assertion failure in template type-
checking in certain cases, when a directive was accidentally matched on
a microsyntax template element and also had a binding which referenced a
variable declared in the microsyntax. This resulted in the type-checker
attempting to generate a reference to a variable that didn't exist in that
scope.
The fix is to distinguish between the two cases and select the appropriate
set of attributes to match on accordingly.
Testing strategy: tested in the t2_binder tests.
PR Close#29698
Prior to this change i18n block bindings were converted to Expressions right away (once we first access them), when in non-i18n cases we processed them differently: the actual conversion happens at instructions generation. Because of this discrepancy, the output for bindings in i18n blocks was generated incorrectly (with invalid indicies in pipeBindN fns and invalid references to non-existent local variables). Now the bindings processing is unified and i18nExp instructions should contain right bind expressions.
PR Close#28969
This commit consolidates the options that can modify the
parsing of text (e.g. HTML, Angular templates, CSS, i18n)
into an AST for further processing into a single `options`
hash.
This makes the code cleaner and more readable, but also
enables us to support further options to parsing without
triggering wide ranging changes to code that should not
be affected by these new options. Specifically, it will let
us pass information about the placement of a template
that is being parsed in its containing file, which is essential
for accurate SourceMap processing.
PR Close#28055
This commit introduces the "t2" API, which processes parsed template ASTs
and performs a number of functions such as binding (the process of
semantically interpreting cross-references within the template) and
directive matching. The API is modeled on TypeScript's TypeChecker API,
with oracle methods that give access to collected metadata.
This work is a prerequisite for the upcoming template type-checking
functionality, and will also become the basis for a refactored
TemplateDefinitionBuilder.
PR Close#26203