When injecting with `@Attribute`, namespaced attributes should not match (in order to have feature parity with View Engine).
This PR resolves FW-1137
PR Close#29257
BREAKING CHANGE:
Certain elements (like `<tr>` or `<col>`) require parent elements to be of a certain type by the HTML specification
(ex. <tr> can only be inside <tbody> / <thead>). Before this change Angular template parser was auto-correcting
"invalid" HTML using the following rules:
- `<tr>` would be wrapped in `<tbody>` if not inside `<tbody>`, `<tfoot>` or `<thead>`;
- `<col>` would be wrapped in `<colgroup>` if not inside `<colgroup>`.
This meachanism of automatic wrapping / auto-correcting was problematic for several reasons:
- it is non-obvious and arbitrary (ex. there are more HTML elements that has rules for parent type);
- it is incorrect for cases where `<tr>` / `<col>` are at the root of a component's content, ex.:
```html
<projecting-tr-inside-tbody>
<tr>...</tr>
</projecting-tr-inside-tbody>
```
In the above example the `<projecting-tr-inside-tbody>` component culd be "surprised" to see additional
`<tbody>` elements inserted by Angular HTML parser.
PR Close#29219
Previously, ngtsc would resolve forward references while evaluating the
bootstrap, declaration, imports, and exports fields of NgModule types.
However, when generating the resulting ngModuleDef, the forward nature of
these references was not taken into consideration, and so the generated JS
code would incorrectly reference types not yet declared.
This commit fixes this issue by introducing function closures in the
NgModuleDef type, similarly to how NgComponentDef uses them for forward
declarations of its directives and pipes arrays. ngtsc will then generate
closures when required, and the runtime will unwrap them if present.
PR Close#29198
This fixes an issue with commit b6f6b117. In this commit, default imports
processed in a type-to-value conversion were recorded as non-local imports
with a '*' name, and the ImportManager generated a new default import for
them. When transpiled to ES2015 modules, this resulted in the following
correct code:
import i3 from './module';
// somewhere in the file, a value reference of i3:
{type: i3}
However, when the AST with this synthetic import and reference was
transpiled to non-ES2015 modules (for example, to commonjs) an issue
appeared:
var module_1 = require('./module');
{type: i3}
TypeScript renames the imported identifier from i3 to module_1, but doesn't
substitute later references to i3. This is because the import and reference
are both synthetic, and never went through the TypeScript AST step of
"binding" which associates the reference to its import. This association is
important during emit when the identifiers might change.
Synthetic (transformer-added) imports will never be bound properly. The only
possible solution is to reuse the user's original import and the identifier
from it, which will be properly downleveled. The issue with this approach
(which prompted the fix in b6f6b117) is that if the import is only used in a
type position, TypeScript will mark it for deletion in the generated JS,
even though additional non-type usages are added in the transformer. This
again would leave a dangling import.
To work around this, it's necessary for the compiler to keep track of
identifiers that it emits which came from default imports, and tell TS not
to remove those imports during transpilation. A `DefaultImportTracker` class
is implemented to perform this tracking. It implements a
`DefaultImportRecorder` interface, which is used to record two significant
pieces of information:
* when a WrappedNodeExpr is generated which refers to a default imported
value, the ts.Identifier is associated to the ts.ImportDeclaration via
the recorder.
* when that WrappedNodeExpr is later emitted as part of the statement /
expression translators, the fact that the ts.Identifier was used is
also recorded.
Combined, this tracking gives the `DefaultImportTracker` enough information
to implement another TS transformer, which can recognize default imports
which were used in the output of the Ivy transform and can prevent them
from being elided. This is done by creating a new ts.ImportDeclaration for
the imports with the same ts.ImportClause. A test verifies that this works.
PR Close#29266
Prior to this change default selector for Components was not applied in case selector is missing or defined as an empty string. This update aligns this behavior between Ivy and VE: now default selector is used for Components when it's needed. Directives with empty selector are not allowed and trigger a compile-time error in both Ivy and VE.
PR Close#29239
With 6215799, we introduced a schematic for the new static-query timing.
Currently when someone runs the update schematic manually within his
CLI project (the schematic does not run automatically yet), he might have
noticed that the migration is executed for the same `tsconfig` file multiple
times. This can happen because the `getProjectTsConfigPaths` function
can incorrectly return the same tsconfig multiple times. The paths are not
properly deduped as we don't normalize the determined project tsconfig paths
PR Close#29133
Currently the static-query migration does not properly handle functions which
are declared externally. This is because we don't resolve the symbol of the
call-expression through its type. Currently we just determine the symbol of the
call-expression through the given call expression node, which doesn't necessarily
refer to the *value declaration* of the call expression. e.g. the symbol refers to the
import declaration which imports the external function. This means that we currently
can't check the external function as we couldn't find the actual value declaration.
We can fix this by resolving the type of the call expression and using the type in order
to retrieve the symbol containing the *value declaration*
PR Close#29133
Currently when the static-query runs for a project with multiple TypeScript
configuration files (e.g. a usual CLI project), the migration incorrectly
applies the code transformation multiple times. This is because the migration
is currently based on the source file contents in the file system, while the
actual source file contents could have already changed in the devkit schematic
tree.
PR Close#29133
With 6215799055, we introduced a schematic
for the Angular core package that automatically migrates unexplicit
query definitions to the explicit query timing (static <-> dynamic).
As the initial foundation was already big enough, it was planned
to come up with a follow-up that handles asynchronous query
usages properly. e.g. queries could be used in Promises,
`setTimeout`, `setInterval`, `requestAnimationFrame` and more, but
the schematic would incorrectly declare these queries as static.
This commit ensures that we properly handle these micro/macro
tasks and don't incorrectly consider queries as static.
The declaration usage visitor should only check the synchronous
control flow and completely ignore any statements within function
like expressions which aren't explicitly executed in a synchronous
way. e.g. IIFE's still work as the function expression is
synchronously invoked.
PR Close#29133
Currently with ViewEngine, if someone runs the platform's
`bootstrapModule` method in order to boostrap a module in
JIT mode, external component resources are properly resolved
*automatically*.
Currently with Ivy, the developer would need to manually call
`resolveComponentResources` in order to asynchronously fetch
the determined external component resources. In order to make
this backwards compatible with ViewEngine, and also since
platforms can already specify a `ResourceLoader` compiler
provider, we need to automatically resolve all external
component resources on module bootstrap.
--
Since the `ResourceLoader` is part of the `@angular/compiler`,
because ViewEngine performed the factory creation in the compiler,
we can't access the `ResourceLoader` token from within core.
In order to workaround this without introducing a breaking change,
we just proxy the `ResourceLoader` token to `core` through the
compiler facade. In the future, we should be able to move the
`ResourceLoader` to core when ViewEngine code no longer exists in
the `@angular/compiler`.
PR Close#29083
Dynamic nodes are created at the end of the view stack, but we were removing all the placeholders between `i18nStart` and the last created node index, instead of removing everything between `i18nStart` and `i18nEnd`. This caused errors when dynamic nodes where created in multiple i18n blocks because we would remove all of the dynamic nodes created in the previous i18n blocks.
PR Close#29252
`api-extractor` binary is required for external consumers of `ng_module` that want to use the `bundle_dts` flag.
This also sets a different api-exttractor binary to use for ng_module, based if it's internal or external.
PR Close#29202
Prior to this change the code didn't take into account the fact that decorators can be aliases while importing into a script. As a result, these decorators were not recognized by Angular and various failures happened because of that. Now we take aliases into account and resolve decorator name properly.
PR Close#29195
`getCurrentDirectory` directory doesn't return a posix separated normalized path. While `rootDir` and `rootDirs` should return posix separated paths, it's best to not assume as other paths within the compiler options can be returned not posix separated such as `basePath`
See: https://github.com/Microsoft/TypeScript/blob/master/src/compiler/sys.ts#L635
This partially fixes#29140, however there needs to be a change in the CLI as well to handle this, as at the moment we are leaking devkit paths which is not correct.
Fixes#29140
PR Close#29151
Sometimes declarations are not exported publicly but are exported under
a private name. In this case, rather than adding a completely new
export to the entry point, we should create an export that aliases the
private name back to the original public name.
This is important when the typings files have been rolled-up using a tool
such as the [API Extractor](https://api-extractor.com/). In this case
the internal type of an aliased private export will be removed completely
from the typings file, so there is no "original" type to re-export.
For example:
If there are the following TS files:
**entry-point.ts**
```ts
export {Internal as External} from './internal';
```
**internal.ts**
```ts
export class Internal {
foo(): void;
}
```
Then the API Extractor might roll up the .d.ts files into:
```ts
export declare class External {
foo(): void;
}
```
In this case ngcc should add an export so the file looks like:
```ts
export declare class External {
foo(): void;
}
export {External as Internal};
```
PR Close#28735
ngsummary files were generated with an export for each class declaration.
However, some Angular code declares classes (class Foo) and exports them
(export {Foo}) separately, which was causing incomplete summary files.
This commit expands the set of symbol names for which summary exports will
be generated, fixing this issue.
PR Close#29193
Previously, when the NgModule scope resolver discovered semantic errors
within a users NgModules, it would throw assertion errors. TODOs in the
codebase indicated these should become ts.Diagnostics eventually.
Besides producing better-looking errors, there is another reason to make
this change asap: these assertions were shadowing actual errors, via an
interesting mechanism:
1) a component would produce a ts.Diagnostic during its analyze() step
2) as a result, it wouldn't register component metadata with the scope
resolver
3) the NgModule for the component references it in exports, which was
detected as an invalid export (no metadata registering it as a
component).
4) the resulting assertion error would crash the compiler, hiding the
real cause of the problem (an invalid component).
This commit should mitigate this problem by converting scoping errors to
proper ts.Diagnostics. Additionally, we should consider registering some
marker indicating a class is a directive/component/pipe without actually
requiring full metadata to be produced for it, which would allow suppression
of errors like "invalid export" for such invalid types.
PR Close#29191
At the moment, certain tests relies on resolving the module with an index.d.ts, this root cause might be some implementations are missing from the mocks.
Similar to: 58b4045359
PR Close#28884
`ng_module` will now include an `src/r3_symbol.d.ts` when compiling the core package under `ngc` togather with `dts bundling`, This is due that `ngcc` relies on this file to be present, but the `r3_symbols` file which is not part of our public api.
With this change, we can now ship an addition dts file which is flattened.
PR Close#28884
This commit refactors and expands ngtsc's support for generating imports of
values from imports of types (this is used for example when importing a
class referenced in a type annotation in a constructor).
Previously, this logic handled "import {Foo} from" and "import * as foo
from" style imports, but failed on imports of default values ("import
Foo from"). This commit moves the type-to-value logic to a separate file and
expands it to cover the default import case. Doing this also required
augmenting the ImportManager to track default as well as non-default import
generation. The APIs were made a little cleaner at the same time.
PR Close#29146
In the TypeScript compiler API, emit() can be performed either on a single
ts.SourceFile or on the entire ts.Program simultaneously.
ngtsc previously used whole-program emit, which was convenient to use while
spinning up the project but has a significant drawback: it causes a type
checking operation to occur for the whole program, including .d.ts files.
In large Bazel environments (such as Google's codebase), an ngtsc invocation
can have a few .ts files and thousands of .d.ts inputs. This unwanted type
checking is therefore a significant drain on performance.
This commit switches ngtsc to emit each .ts file individually, avoiding the
unwanted type checking.
PR Close#29147
When processing a JavaScript program, TS may come across a symbol that has
been imported from a TypeScript typings file.
In this case the compiler may pass the ReflectionHost a `prototype` symbol
as an export of the class.
This pseudo-member symbol has no declarations, which previously caused the
code in `Esm5ReflectionHost.reflectMembers()` to crash.
Now we just quietly ignore such a symbol and leave `Esm2015ReflectionHost`
to deal with it.
(As it happens `Esm2015ReflectionHost` also quietly ignores this symbol).
PR Close#29158
This method is a more convenient and efficient way of removing all
components from a FormArray. Before it, we needed to loop the FormArray
removing each component until empty.
Resolves#18531
PR Close#28918
Prior to this commit, i18n instructions (i18n, i18nStart) were generated before listener instructions. As a result, event listeners were attached to the wrong element (text node, not the parent element). This change updates the order of instructions and puts i18n ones after listeners, to make sure listeners are attached to the right elements.
PR Close#29173
For the template type checking to work correctly, it needs to know
what attributes are bound to expressions or directives, which may
require expressions in the template to be evaluated in a different
scope.
In inline templates, there are attributes that are now marked as
"Template" attributes. We need to ensure that the template
type checking code looks at these "bound" attributes as well as the
"input" attributes.
PR Close#29041
The content projection mechanism is static, in that it only looks at the static
template nodes before directives are matched and change detection is run.
When you have a selector-based content projection the selection is based
on nodes that are available in the template.
For example:
```
<ng-content selector="[some-attr]"></ng-content>
```
would match
```
<div some-attr="..."></div>
```
If you have an inline-template in your projected nodes. For example:
```
<div *ngIf="..." some-attr="..."></div>
```
This gets pre-parsed and converted to a canonical form.
For example:
```
<ng-template [ngIf]="...">
<div some-attr=".."></div>
</ng-template>
```
Note that only structural attributes (e.g. `*ngIf`) stay with the `<ng-template>`
node. The other attributes move to the contained element inside the template.
When this happens in ivy, the ng-template content is removed
from the component template function and is compiled into its own
template function. But this means that the information about the
attributes that were on the content are lost and the projection
selection mechanism is unable to match the original
`<div *ngIf="..." some-attr>`.
This commit adds support for this in ivy. Attributes are separated into three
groups (Bindings, Templates and "other"). For inline-templates the Bindings
and "other" types are hoisted back from the contained node to the `template()`
instruction, so that they can be used in content projection matching.
PR Close#29041
This commit adds a new `AttributeMarker` type that will be used, in a
future commit, to mark attributes as coming from an inline-template
expansion, rather than the element that is being contained in the template.
PR Close#29041
This PR also changes the name of `EmptyOutletComponent` to `ɵEmptyOutletComponent`. This is because `ngcc` requires the node to retain the original name while dts bundler will rename the node is it's only exported using the aliases.
Example typings files:
```ts
declare class EmptyOutletComponent {
}
export {EmptyOutletComponent as ɵEmptyOutletComponent}
```
will be emitted as
```ts
export declare class ɵEmptyOutletComponent {
}
```
PR Close#28833
This commit modifies the Bazel builder to copy the Bazel WORKSPACE and
BUILD.bazel files to the project root directory before invoking Bazel.
This hides the Bazel files from users.
PR Close#29110
`ng build` should produce a bundle that could be readily deployed to
a web server, similar to the behavior of current `ng build` with
webpack.
Note that in Bazel, there is no `ng build` for dev bundles. Instead,
users are expected to run `ts_devserver`.
Closes https://github.com/angular/angular/issues/28877
PR Close#29136
- remove individuals from @angular/* package.json, we don't keep them up-to-date
- switch keys in contributors.json to GitHub handles, seems like a better identifier and lets us grab avatar images from GitHub account
- move emeritus ppl to a new Alumni group (won't yet appear on the site)
- add "lead/mentor" keys so we know who is coordinating work
- add a script that generates an "org chart" graphic
PR Close#28930
Prior to this change, the RegExp that was used to check for dashes in field names used "g" (global) flag that retains lastIndex, which might result in skipping some fields that should be wrapped in quotes (since lastIndex advanced beyond the next "-" location). This commit removes this flag and updates the test to make sure there are no regressions.
PR Close#29126
This update gives external tooling the ability for async providers to
finish resolving before the document is serialized. This is not a
breaking change since render already returns a promise. All returned
promises from `BEFORE_APP_SERIALIZED` providers will wait to be
resolved or rejected. Any rejected promises will only console.warn().
PR Close#29120
Some tests in exports spec rely on the exact output of innerHTML. In IE11 the order of attributes might change, thus causing tests to fail (in case an element contains more than one attribute). This commit avoids innerHTML usage and performs the necessary checks via element properties.
PR Close#29127
Some of the export tests had assertions that relied on capitalization
of attributes in the DOM. IE treats capitalization somewhat differently,
so our SauceLabs tests were failing.
This commit tweaks the tests so that the assertions do not rely on
attributes to be capitalized or not.
PR Close#29125
ngtsc occasionally converts a type reference (such as the type of a
parameter in a constructor) to a value reference (argument to a
directiveInject call). TypeScript has a bad habit of sometimes removing
the import statement associated with this type reference, because it's a
type only import when it initially looks at the file.
A solution to this is to always add an import to refer to a type position
value that's imported, and not rely on the existing import.
PR Close#29111
With 6215799055 we introduced schematics
for `core`, but due to the fact the Saucelabs legacy job does not run
for PRs, we didn't realize that the legacy Saucelabs job ends up
running the schematic specs.
We don't want to run these schematic tests in the legacy-saucelabs job,
as these are node-only specs and the non-Bazel Karma setup is not set
up to provide the devkit schematic node modules.
We exclude the schematics folder in the `core` package in the
legacy-build tsconfig file (similar to how it is done for elements)
PR Close#29124
Introduces an update schematic for the "@angular/core" package
that automatically migrates pre-V8 "ViewChild" and "ContentChild"
queries to the new explicit timing syntax. This is not required
yet, but with Ivy, queries will be "dynamic" by default. Therefore
specifying an explicit query timing ensures that developers can
smoothly migrate to Ivy (once it's the default).
Read more about the explicit timing API here:
https://github.com/angular/angular/pull/28810
PR Close#28983
Implement `readFile` in `MockTypescriptHost` so TypeScript can resolve module based on it's resolution, since certain files are not on disk but in memory
PR Close#28854
This PR also changes the name of NgNoValidate` to `ɵNgNoValidate`. This is because `ngcc` requires the node to retain the original name while dts bundler will rename the node is it's only exported using the aliases.
Example typings files:
```ts
declare class NgNoValidate{
}
export {NgNoValidateas ɵNgNoValidate}
```
will be emitted as
```ts
export declare class ɵNgNoValidate {
}
```
PR Close#28854
* Use exclusively `TeamComponent` class for examples, as currently there are at least 3 different component classes being used, one of which is actually as a type argument for a `Resolve<T>` implementation.
PR Close#29093
The version used to test and build from the root package.json is pinned to 2.1.2. This change ensures that users will at a minimum be using the same version.
PR Close#28893
Previously, if an app version contained the same files as an older
version (e.g. making a change, then rolling it back), the SW would not
detect it as the latest version (and update clients).
This commit fixes it by adding a `timestamp` field in `ngsw.json`, which
makes each build unique (with sufficiently high probability).
Fixes#24338
PR Close#26006
When ngtsc generates a .ngfactory shim, it does so based on the contents of
an original file in the program. Occasionally these original files have
comments at the top which are load-bearing (e.g. they contain jsdoc
annotations which are significant to downstream bundling tools). The
generated factory shims should preserve this comment.
This commit adds a step to the ngfactory generator to preserve the top-level
comment from the original source file.
FW-1006 #resolve
FW-1095 #resolve
PR Close#29065
Prior to this change, keys in "inputs" and "outputs" objects generated by compiler were not checked against unsafe characters. As a result, in some cases the generated code was throwing JS error. Now we check whether a given key contains any unsafe chars and wrap it in quotes if needed.
PR Close#28919
Angular supports having a component extend off of a parent component.
When this happens, all annotation-level data is inherited including styles
and classes. Up until now, Ivy only paid attention to static styling
values on the parent component and not the child component. This patch
ensures that both the parent's component and child component's styling
data is merged and rendered accordingly.
Jira Issue: FW-1081
PR Close#29015
Currently we only reset the `Attached` flag of a view if it is detached through its parent, however this means that if a root view is destroyed, its flag will never be reset. This manifested itself in one of the Material tests where we were destroying the root view.
This PR resolves FW-1130.
PR Close#29064
The ngtsc partial evaluator previously would not handle an enum reference
inside a template string expression correctly. Enums are resolved to an
`EnumValue` type, which has a `resolved` property with the actual value.
When effectively toString-ing a `ResolvedValue` as part of visiting a
template expression, the partial evaluator needs to translate `EnumValue`s
to their fully resolved value, which this commit does.
PR Close#29062
Currently, ngtsc has a bug where if you alias the name of a decorator when
importing it, it won't be detected properly. This is because the compiler
uses the aliased name and not the original, declared name of the decorator
for detection.
This commit fixes the compiler to compare against the declared name of
decorators when available, and adds a test to prevent regression.
PR Close#29061
ngtsc has cyclic import detection, to determine when adding an import to a
directive or pipe would create a cycle. However, this detection must also
account for already inserted imports, as it's possible for both directions
of a circular import to be inserted by Ivy (as opposed to at least one of
those edges existing in the user's program).
This commit fixes the circular import detection for components to take into
consideration already added edges. This is difficult for one critical
reason: only edges to files which will *actually* be imported should be
considered. However, that depends on which directives & pipes are used in
a given template, which is currently only known by running the
TemplateDefinitionBuilder during the 'compile' phase. This is too late; the
decision whether to use remote scoping (which consults the import graph) is
made during the 'resolve' phase, before any compilation has taken place.
Thus, the only way to correctly consider synthetic edges is for the compiler
to know exactly which directives & pipes are used in a template during
'resolve'. There are two ways to achieve this:
1) refactor `TemplateDefinitionBuilder` to do its work in two phases, with
directive matching occurring as a separate step which can be performed
earlier.
2) use the `R3TargetBinder` in the 'resolve' phase to independently bind the
template and get information about used directives.
Option 1 is ideal, but option 2 is currently used for practical reasons. The
cost of binding the template can be shared with template-typechecking.
PR Close#29040
In the @Component decorator, the 'host' field is an object which represents
host bindings. The type of this field is complex, but is generally of the
form {[key: string]: string}. Several different kinds of bindings can be
specified, depending on the structure of the key.
For example:
```
@Component({
host: {'[prop]': 'someExpr'}
})
```
will bind an expression 'someExpr' to the property 'prop'. This is known to
be a property binding because of the square brackets in the binding key.
If the binding key is a plain string (no brackets or parentheses), then it
is known as an attribute binding. In this case, the right-hand side is not
interpreted as an expression, but is instead a constant string.
There is no actual requirement that at build time, these constant strings
are known to the compiler, but this was previously enforced as a side effect
of requiring the binding expressions for property and event bindings to be
statically known (as they need to be parsed). This commit breaks that
relationship and allows the attribute bindings to be dynamic. In the case
that they are dynamic, the references to the dynamic values are reflected
into the Ivy instructions for attribute bindings.
PR Close#29033
DynamicValues are generated whenever a partially evaluated expression is
unable to be resolved statically. They contain a reference to the ts.Node
which wasn't resolvable.
They can also be nested. For example, the expression 'a + b' is resolvable
only if 'a' and 'b' are themselves resolvable. If either 'a' or 'b' resolve
to a DynamicValue, the whole expression must also resolve to a DynamicValue.
Previously, if 'a' resolved to a DynamicValue, the entire expression might
have been resolved to the same DynamicValue. This correctly indicated that
the expression wasn't resolvable, but didn't return a reference to the
shallow node that couldn't be resolved (the expression 'a + b'), only a
reference to the deep node that couldn't be resolved ('a').
In certain situations, it's very useful to know the shallow unresolvable
node (for example, to use it verbatim in the output). To support this,
the partial evaluator is updated to always wrap DynamicValue to point to
each unresolvable expression as it's processed, ensuring the receiver can
determine exactly which expression node failed to resolve.
PR Close#29033
Currently if a user accidentally calls ViewContainerRef.insert() with
a view that has already been attached, we do not clean up the references
properly, so we create a view tree with a cycle. This causes an infinite
loop when the view is destroyed.
This PR ensures that we fall back to ViewContainerRef.move() behavior
if we try to insert a view that is already attached. This fixes the
cycle and honors the user intention.
PR Close#29047