This commit cleans up the I18MetaVisitor code by moving all the
state of the visitor into a `context` object that gets passed along
as the nodes are being visited. This is in keeping with how visitors
are designed but also makes it easy to remove the
[definite assignment assertions](https://mariusschulz.com/blog/strict-property-initialization-in-typescript#solution-4-definite-assignment-assertion)
from the class properties.
Also, a `I18nMessageFactory` named type is exported to make it
clearer to consumers of the `createI18nMessageFactory()` function.
PR Close#33318
This is a potential fix for https://github.com/angular/vscode-ng-language-service/issues/235
suggested by @andrius-pra in
47696136e3.
Currently, CRLF line endings are converted to LFs and this causes the
diagnostics span to be off in templates that use CRLF. The line endings
must be preserved in order to maintain correct span offset. The solution
is to add an option to the Tokenizer to indicate such preservation.
PR Close#33241
This commit adapts the private NgModule re-export system (using aliasing) to
ngcc. Not all ngcc compilations are compatible with these re-exports, as
they assume a 1:1 correspondence between .js and .d.ts files. The primary
concern here is supporting them for commonjs-only packages.
PR Close#33177
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).
A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.
For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:
```typescript
import {FooModule} from 'foo/module';
```
In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:
1. The compiler would have to reverse the path mapping in order to determine
a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
mapped in the program at all.
The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.
It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.
To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName
This has several effects:
1. It guarantees anyone depending on the NgModule will be able to import its
directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
on from code on NPM. Effectively, this private exported name will be a
part of the package's .d.ts API, and cannot be changed in a non-breaking
fashion.
Fixes#29361
FW-1610 #resolve
PR Close#33177
Changed `setValue` documentation for throwing an error as it contained a grammar
mistake and also may have caused ambiguity around when exactly the
method would throw.
PR Close#33126
Static methods that return a type of ModuleWithProviders currently
do not have to specify a type because the generic falls back to any.
This is problematic because the type of the actual module being
returned is not present in the type information.
Since Ivy uses d.ts files exclusively for downstream packages
(rather than metadata.json files, for example), we no longer have
the type of the actual module being created.
For this reason, a generic type should be added for
ModuleWithProviders that specifies the module type. This will be
required for all users in v10, but will only be necessary for
users of Ivy in v9.
PR Close#33217
Previously, the `FileSystem` abstraction featured a `mkdir()` method. In
`NodeJSFileSystem` (the default `FileSystem` implementation used in
actual code), the method behaved similar to Node.js' `fs.mkdirSync()`
(i.e. failing if any parent directory is missing or the directory exists
already). In contrast, `MockFileSystem` (which is the basis or mock
`FileSystem` implementations used in tests) implemented `mkdir()` as an
alias to `ensureDir()`, which behaved more like Node.js'
`fs.mkdirSync()` with the `recursive` option set to `true` (i.e.
creating any missing parent directories and succeeding if the directory
exists already).
This commit fixes this inconsistency by removing the `mkdir()` method,
which was not used anyway and only keeping `ensureDir()` (which is
consistent across our different `FileSystem` implementations).
PR Close#33237
When `ngcc` is running in parallel mode (usually when run from the
command line) and the `createNewEntryPointFormats` option is set to true
(e.g. via the `--create-ivy-entry-points` command line option), it can
happen that two workers end up trying to create the same directory at
the same time. This can lead to a race condition, where both check for
the directory existence, see that the directory does not exist and both
try to create it, with the second failing due the directory's having
already been created by the first one. Note that this only affects
directories and not files, because `ngcc` tasks operate on different
sets of files.
This commit avoids this race condition by allowing `FileSystem`'s
`ensureDir()` method to not fail if one of the directories it is trying
to create already exists (and is indeed a directory). This is fine for
the `ensureDir()` method, since it's purpose is to ensure that the
specified directory exists. So, even if the `mkdir()` call failed
(because the directory exists), `ensureDir()` has still completed its
mission.
Related discussion: https://github.com/angular/angular/pull/33049#issuecomment-540485703
FW-1635 #resolve
PR Close#33237
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.
For example, you could imagine an input of the form:
```typescript
@Input() get value(): string {
return this._value;
}
set value(v: {toString(): string}) {
this._value = v.toString();
}
```
Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.
Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.
To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.
To solve the case above, for example, MatInput might write:
```typescript
class MatInput {
// rest of the directive...
static ngCoerceInput_value(value: {toString(): string}): string {
return null!;
}
}
```
FW-1475 #resolve
PR Close#33243
As a hack to get the Ivy compiler ngtsc off the ground, the existing
'allowEmptyCodegenFiles' option was used to control generation of ngfactory
and ngsummary shims during compilation. This option was selected since it's
enabled in google3 but never enabled in external projects.
As ngtsc is now mature and the role shims play in compilation is now better
understood across the ecosystem, this commit introduces two new compiler
options to control shim generation:
* generateNgFactoryShims controls the generation of .ngfactory shims.
* generateNgSummaryShims controls the generation of .ngsummary shims.
The 'allowEmptyCodegenFiles' option is still honored if either of the above
flags are not set explicitly.
PR Close#33256
Angular v9 schematics should print out a link to the migration
guide associated with each schematic. This way, users have an
easy way to find more information about the automatic code
transformations they will see with `ng update`.
PR Close#33258
With Ivy the `entryComponents` array isn't necessary anymore. These changes mark it as deprecated so that it can be removed in a future version.
PR Close#33205
Currently if a `ModuleWithProviders` is missng its generic type, we throw a cryptic error like:
```
error TS-991010: Value at position 3 in the NgModule.imports of TodosModule is not a reference: [object Object]
```
These changes add a better error to make it easier to debug.
PR Close#33187