Any decorator information present in TypeScript is emitted into the
generated JavaScript sources by means of `__decorate` call. This call
contains both the decorators as they existed in the original source
code, together with calls to `tslib` helpers that convey additional
information on e.g. type information and parameter decorators. These
different kinds of decorator calls were not previously distinguished on
their own, but instead all treated as `Decorator` by themselves. The
"decorators" that were actually `tslib` helper calls were conveniently
filtered out because they were not imported from `@angular/core`, a
characteristic that ngcc uses to drop certain decorators.
Note that this posed an inconsistency in ngcc when it processes
`@angular/core`'s UMD bundle, as the `tslib` helper functions have been
inlined in said bundle. Because of the inlining, the `tslib` helpers
appear to be from `@angular/core`, so ngcc would fail to drop those
apparent "decorators". This inconsistency does not currently cause any
issues, as ngtsc is specifically looking for decorators based on their
name and any remaining decorators are simply ignored.
This commit rewrites the decorator analysis of a class to occur all in a
single phase, instead of all throughout the `ReflectionHost`. This
allows to categorize the various decorate calls in a single sweep,
instead of constantly needing to filter out undesired decorate calls on
the go. As an added benefit, the computed decorator information is now
cached per class, such that subsequent reflection queries that need
decorator information can reuse the cached info.
PR Close#31614
Previously we expected the constructor parameter `decorators`
property to be an array wrapped in a function. Now we also support
an array not wrapped in a function.
PR Close#30591
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
Packages that have been compiled using an older version of TypeScript
can have their decorators at the top-level of the ES5 bundles, instead
of inside the IIFE that is emitted for the class. Before this change,
ngcc only took static property assignments inside the IIFE into account,
therefore missing the decorators that were assigned at the top-level.
This commit extends the ES5 host to look for static properties in two
places. Testcases for all bundle formats that contain ES5 have been added
to ensure that this works in the various flavours.
A patch is included to support UMD bundles. The UMD factory affects how
TypeScripts binds the static properties to symbols, see the docblock of
the patch function for more details.
PR Close#30795
9d9c9e43e5 has been created a few days ago
and wasn't rebased on top of recent changes that introduces a commonjs host.
This means that tests for the commonjs host haven't been updated to work with
the changes from from #30492 and now fail in `master`.
PR Close#30967
Currently undecorated classes are intentionally not processed
with ngcc. This is causing unexpected behavior because decorator
handlers such as `base_def.ts` are specifically interested in class
definitions without top-level decorators, so that the base definition
can be generated if there are Angular-specific class members.
In order to ensure that undecorated base-classes work as expected
with Ivy, we need to run the decorator handlers for all top-level
class declarations (not only for those with decorators). This is similar
to when `ngtsc` runs decorator handlers when analyzing source-files.
Resolves FW-1355. Fixes https://github.com/angular/components/issues/16178
PR Close#30821