Commit Graph

6 Commits

Author SHA1 Message Date
Alex Rickabaugh 74edde0a94 perf(ivy): reuse prior analysis work during incremental builds (#34288)
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.

To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.

The new algorithm implemented by this commit is such:

1) Each incremental build starts with knowledge of the last known good
   dependency graph and analysis results from the last successful build,
   plus of course information about the set of files changed.

2) The previous dependency graph's information is used to determine the
   set of source files which have "logically" changed. A source file is
   considered logically changed if it or any of its dependencies have
   physically changed (on disk) since the last successful compilation. Any
   logically unchanged dependencies have their dependency information copied
   over to the new dependency graph.

3) During the `TraitCompiler`'s loop to consider all source files in the
   program, if a source file is logically unchanged then its previous
   analyses are "adopted" (and their 'register' steps are run). If the file
   is logically changed, then it is re-analyzed as usual.

4) Then, incremental build proceeds as before, with the new dependency graph
   being used to determine the set of files which require re-emitting.

This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.

Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.

PR Close #34288
2019-12-12 13:11:45 -08:00
Pete Bacon Darwin 7186f9c016 refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921)
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).

For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.

The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.

You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.

Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.

All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:

* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.

All ngcc and ngtsc source and tests now use this virtual file-system setup.

PR Close #30921
2019-06-25 16:25:24 -07:00
Alan Agius 5653fada32 feat: add TypeScript 3 support (#25275)
PR Close #25275
2018-08-27 21:07:53 -04:00
Chuck Jazdzewski 8449eb8d62 build: upgrade to TypeScript 2.7 (#22669)
Fixes: #21571

PR Close #22669
2018-03-12 09:27:23 -07:00
Chuck Jazdzewski 8ecda94899 feat(compiler-cli): improve error messages produced during structural errors (#20459)
The errors produced when error were encountered while interpreting the
content of a directive was often incomprehencible. With this change
these kind of error messages should be easier to understand and diagnose.

PR Close #20459
2017-11-27 16:59:57 -06:00
Matias Niemelä 4695c69cf1 refactor(compiler): remove all source-level traces to tsc-wrapped (#18966)
- temporarily keeps the old sources under packages/tsc-wrapped
  until the build scripts are changed to use compiler-cli everywhere.
- removes the compiler options `disableTransformerPipeline` that was introduced
  in a previous beta of Angular 5, i.e. the transformer based compiler
  is now always enabled.

PR Close #18966
2017-09-13 20:47:37 -04:00