Commit Graph

363 Commits

Author SHA1 Message Date
Pete Bacon Darwin 2736a43ecb fix(compiler-cli): support namespaced query types in directives (#38959)
Previously directive "queries" that relied upon a namespaced type

```ts
queries: {
  'mcontent': new core.ContentChild('test2'),
}
```

caused an error to be thrown. This is now supported.

PR Close #38959
2020-10-12 08:32:47 -07:00
Pete Bacon Darwin 0accd1e68d refactor(compiler-cli): implement `DeclarationNode` node type (#38959)
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.

It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.

So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.

To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.

PR Close #38959
2020-10-12 08:32:46 -07:00
Kristiyan Kostadinov 4a1c12c773 feat(core): remove ViewEncapsulation.Native (#38882)
Removes `ViewEncapsulation.Native` which has been deprecated for several major versions.

BREAKING CHANGES:
* `ViewEncapsulation.Native` has been removed. Use `ViewEncapsulation.ShadowDom` instead. Existing
usages will be updated automatically by `ng update`.

PR Close #38882
2020-10-08 11:56:03 -07:00
JoostK 06525cfed3 test(compiler-cli): fix tests to have at least one component (#39011)
With the introduction of incremental type checking in #36211, an
intermediate `ts.Program` for type checking is only created if there are
any templates to check. This rendered some tests ineffective at avoiding
regressions, as the intermediate `ts.Program` was required for the tests
to fail if the scenario under test would not be accounted for. This
commit adds a single component to these tests, to ensure the
intermediate `ts.Program` is in fact created.

PR Close #39011
2020-09-28 16:27:34 -04:00
JoostK e9a8f9f705 fix(compiler-cli): enable @types discovery in incremental rebuilds (#39011)
Prior to this fix, incremental rebuilds could fail to type check due to
missing ambient types from auto-discovered declaration files in @types
directories, or type roots in general. This was caused by the
intermediary `ts.Program` that is created for template type checking,
for which a `ts.CompilerHost` was used which did not implement the
optional `directoryExists` methods. As a result, auto-discovery of types
would not be working correctly, and this would retain into the
`ts.Program` that would be created for an incremental rebuild.

This commit fixes the issue by forcing the custom `ts.CompilerHost` used
for type checking to properly delegate into the original
`ts.CompilerHost`, even for optional methods. This is accomplished using
a base class `DelegatingCompilerHost` which is typed in such a way that
newly introduced `ts.CompilerHost` methods must be accounted for.

Fixes #38979

PR Close #39011
2020-09-28 16:27:34 -04:00
JoostK b627f7f02e test(compiler-cli): improve test performance using shared source file cache (#38909)
Some compiler tests take a long time to run, even using multiple
executors. A profiling session revealed that most time is spent in
parsing source files, especially the default libraries are expensive to
parse.

The default library files are constant across all tests, so this commit
introduces a shared cache of parsed source files of the default
libraries. This achieves a significant improvement for several targets
on my machine:

//packages/compiler-cli/test/compliance: from 23s to 5s.
//packages/compiler-cli/test/ngtsc: from 115s to 11s.

Note that the number of shards for the compliance tests has been halved,
as the extra shards no longer provide any speedup.

PR Close #38909
2020-09-25 14:28:49 -04:00
Alex Rickabaugh 40975e06c6 fix(compiler-cli): perform DOM schema checks even in basic mode in g3 (#38943)
In Ivy, template type-checking has 3 modes: basic, full, and strict. The
primary difference between basic and full modes is that basic mode only
checks the top-level template, whereas full mode descends into nested
templates (embedded views like ngIfs and ngFors). Ivy applies this approach
to all of its template type-checking, including the DOM schema checks which
validate whether an element is a valid component/directive or not.

View Engine has both the basic and the full mode, with the same distinction.
However in View Engine, DOM schema checks happen for the full template even
in the basic mode.

Ivy's behavior here is technically a "fix" as it does not make sense for
some checks to apply to the full template and others only to the top-level
view. However, since g3 relies exclusively on the basic mode of checking and
developers there are used to DOM checks applying throughout their template,
this commit re-enables the nested schema checks even in basic mode only in
g3. This is done by enabling the checks only when Closure Compiler
annotations are requested.

Outside of g3, it's recommended that applications use at least the full mode
of checking (controlled by the `fullTemplateTypeCheck` flag), and ideally
the strict mode (`strictTemplates`).

PR Close #38943
2020-09-23 15:46:32 -04:00
JoostK a32a317ea1 fix(compiler-cli): ensure that a declaration is available in type-to-value conversion (#38684)
The type-to-value conversion could previously crash if a symbol was
resolved that does not have any declarations, e.g. because it's imported
from a missing module. This would typically result in a semantic
TypeScript diagnostic and halt further compilation, therefore not
reaching the type-to-value conversion logic. In Bazel however, it turns
out that Angular semantic diagnostics are requested even if there are
semantic TypeScript errors in the program, so it would then reach the
type-to-value conversation and crash.

This commit fixes the unsafe access and adds a test that ignores the
TypeScript semantic error, effectively replicating the situation as
experienced under Bazel.

Fixes #38670

PR Close #38684
2020-09-08 14:06:25 -07:00
Pete Bacon Darwin 7e0b3fd953 fix(compiler-cli): compute source-mappings for localized strings (#38645)
Previously, localized strings had very limited or incorrect source-mapping
information available.

Now the i18n AST nodes and related output AST nodes include source-span
information about message-parts and placeholders - including closing tag
placeholders.

This information is then used when generating the final localized string
ASTs to ensure that the correct source-mapping is rendered.

See #38588 (comment)

PR Close #38645
2020-09-08 13:17:21 -07:00
Alex Rickabaugh c90eb5450d refactor(compiler-cli): make template parsing errors into diagnostics (#38576)
Previously, the compiler was not able to display template parsing errors as
true `ts.Diagnostic`s that point inside the template. Instead, it would
throw an actual `Error`, and "crash" with a stack trace containing the
template errors.

Not only is this a poor user experience, but it causes the Language Service
to also crash as the user is editing a template (in actuality the LS has to
work around this bug).

With this commit, such parsing errors are converted to true template
diagnostics with appropriate span information to be displayed contextually
along with all other diagnostics. This majorly improves the user experience
and unblocks the Language Service from having to deal with the compiler
"crashing" to report errors.

PR Close #38576
2020-09-03 14:02:35 -07:00
Pete Bacon Darwin 1d8c5d88cd refactor(compiler): `element.sourceSpan` should span the `outerHTML` (#38581)
Previously, the `sourceSpan` and `startSourceSpan` were the same
object, which meant that you had the following situation:

```
element = <div>some content</div>
sourceSpan = <div>
startSourceSpan = <div>
endSourceSpan = </div>
```

This made `sourceSpan` redundant and meant that if you
wanted a span for the whole element including its content
and closing tag, it had to be computed.

Now `sourceSpan` is separated from `startSourceSpan`
resulting in:

```
element = <div>some content</div>
sourceSpan = <div>some content</div>
startSourceSpan = <div>
endSourceSpan = </div>
```

PR Close #38581
2020-09-02 14:47:31 -07:00
crisbeto f5a148b1b7 fix(compiler): incorrectly inferring namespace for HTML nodes inside SVG (#38477)
The HTML parser gets an element's namespace either from the tag name
(e.g. `<svg:rect>`) or from its parent element `<svg><rect></svg>`) which
breaks down when an element is inside of an SVG `foreignElement`,
because foreign elements allow nodes from a different namespace to be
inserted into an SVG.

These changes add another flag to the tag definitions which tells child
nodes whether to try to inherit their namespaces from their parents.
It also adds a definition for `foreignObject` with the new flag,
allowing elements placed inside it to infer their namespaces instead.

Fixes #37218.

PR Close #38477
2020-08-31 13:25:38 -07:00
Alan Agius 0fc44e0436 feat(compiler-cli): add support for TypeScript 4.0 (#38076)
With this change we add support for TypeScript 4.0

PR Close #38076
2020-08-24 13:06:59 -07:00
crisbeto e7da4040d6 fix(compiler-cli): adding references to const enums in runtime code (#38542)
We had a couple of places where we were assuming that if a particular
symbol has a value, then it will exist at runtime. This is true in most cases,
but it breaks down for `const` enums.

Fixes #38513.

PR Close #38542
2020-08-21 12:23:21 -07:00
Andrew Scott 71138f6004 feat(compiler-cli): Add compiler option to report errors when assigning to restricted input fields (#38249)
The compiler does not currently report errors when there's an `@Input()`
for a `private`, `protected`, or `readonly` directive/component class member.
This change adds an option to enable reporting errors when a template
attempts to bind to one of these restricted input fields.

PR Close #38249
2020-08-11 09:55:48 -07:00
JoostK fa0104017a refactor(compiler-cli): only use type constructors for directives with generic types (#38249)
Prior to this change, the template type checker would always use a
type-constructor to instantiate a directive. This type-constructor call
serves two purposes:

1. Infer any generic types for the directive instance from the inputs
   that are passed in.
2. Type check the inputs that are passed into the directive's inputs.

The first purpose is only relevant when the directive actually has any
generic types and using a type-constructor for these cases inhibits
a type-check performance penalty, as a type-constructor's signature is
quite complex and needs to be generated for each directive.

This commit refactors the generated type-check blocks to only generate
a type-constructor call for directives that have generic types. Type
checking of inputs is achieved by generating individual statements for
all inputs, using assignments into the directive's fields.

Even if a type-constructor is used for type-inference of generic types
will the input checking also be achieved using the individual assignment
statements. This is done to support the rework of the language service,
which will start to extract symbol information from the type-check
blocks.

As a future optimization, it may be possible to reduce the number of
inputs passed into a type-constructor to only those inputs that
contribute the the type-inference of the generics. As this is not a
necessity at the moment this is left as follow-up work.

Closes #38185

PR Close #38249
2020-08-11 09:55:48 -07:00
JoostK 18098d38b8 fix(compiler-cli): avoid creating value expressions for symbols from type-only imports (#37912)
In TypeScript 3.8 support was added for type-only imports, which only brings in
the symbol as a type, not their value. The Angular compiler did not yet take
the type-only keyword into account when representing symbols in type positions
as value expressions. The class metadata that the compiler emits would include
the value expression for its parameter types, generating actual imports as
necessary. For type-only imports this should not be done, as it introduces an
actual import of the module that was originally just a type-only import.

This commit lets the compiler deal with type-only imports specially, preventing
a value expression from being created.

Fixes #37900

PR Close #37912
2020-08-11 09:53:25 -07:00
JoostK 7525f3afc1 fix(compiler-cli): type-check inputs that include undefined when there's coercion members (#38273)
For attribute bindings that target a directive's input, the template
type checker is able to verify that the type of the input expression is
compatible with the directive's declaration for said input. This
checking adheres to the `strictNullChecks` flag as configured in the
TypeScript compilation, such that errors are reported for expressions
that include `undefined` or `null` in their type if the input's
declaration does not include those types.

There was a bug with this level of type-checking for directives that
also declare coercion members, where binding an expression that includes
the `undefined` type to a directive's input that does not include the
`undefined` type would not be reported as error.

This commit fixes the bug by changing the type-constructor in type-check
code to use an intersection type of regular inputs and coerced inputs,
instead of a union type. The union type would inadvertently allow
`undefined` types to be assigned into the regular inputs, as that would
still satisfy the characteristics of a union type.

As a result of this change, you may start to see build failures if
`strictTemplates` is enabled and `strictInputTypes` is not disabled.
These errors are legitimate and some action is required to achieve a
successful build:

1. Update the templates for which an error is reported and introduce the
   non-null assertion operator at the end of the expression. This
   removes the `undefined` type from the expression's type, making it
   appear as a valid assignment.
2. Disable `strictNullInputTypes` in the compiler options. This will
   implicitly add the non-null assertion operators similar to option 1,
   but all templates in the compilation are affected.
3. Update the directive's input declaration to include the `undefined`
   type, if the directive is not implemented in an external library.

PR Close #38273
2020-08-06 15:21:02 -07:00
Doug Parker dca4443a8e fix(compiler-cli): mark eager `NgModuleFactory` construction as not side effectful (#38320)
Roll forward of #38147.

This allows Closure compiler to tree shake unused constructor calls to `NgModuleFactory`, which is otherwise considered
side-effectful. The Angular compiler generates factory objects which are exported but typically not used, as they are
only needed for compatibility with View Engine. This results in top-level constructor calls, such as:

```typescript
export const FooNgFactory = new NgModuleFactory(Foo);
```

`NgModuleFactory` has a side-effecting constructor, so this statement cannot be tree shaken, even if `FooNgFactory` is
never imported. The `NgModuleFactory` continues to reference its associated `NgModule` and prevents the module and all
its unused dependencies from being tree shaken, making Closure builds significantly larger than necessary.

The fix here is to wrap `NgModuleFactory` constructor with `noSideEffects(() => /* ... */)`, which tricks the Closure
compiler into assuming that the invoked function has no side effects. This allows it to tree-shake unused
`NgModuleFactory()` constructors when they aren't imported. Since the factory can be removed, the module can also be
removed (if nothing else references it), thus tree shaking unused dependencies as expected.

The one notable edge case is for lazy loaded modules. Internally, lazy loading is done as a side effect when the lazy
script is evaluated. For Angular, this side effect is registering the `NgModule`. In Ivy this is done by the
`NgModuleFactory` constructor, so lazy loaded modules **cannot** have their top-level `NgModuleFactory` constructor
call tree shaken. We handle this case by looking for the `id` field on `@NgModule` annotations. All lazy loaded modules
include an `id`. When this `id` is found, the `NgModuleFactory` is generated **without** with `noSideEffects()` call,
so Closure will not tree shake it and the module will lazy-load correctly.

PR Close #38320
2020-08-06 09:02:16 -07:00
Charles Lyding 6f6102d8ad fix(compiler): add PURE annotation to getInheritedFactory calls (#38291)
Currently the `getInheritedFactory` function is implemented to allow
closure to remove the call if the base factory is unused.  However, this
method does not work with terser.  By adding the PURE annotation,
terser will also be able to remove the call when unused.

PR Close #38291
2020-07-30 16:53:52 -07:00
Alex Rickabaugh 3a525d196b Revert "fix(compiler): mark `NgModuleFactory` construction as not side effectful (#38147)" (#38303)
This reverts commit 7f8c2225f2.

This commit caused test failures internally, which were traced back to the
optimizer removing NgModuleFactory constructor calls when those calls caused
side-effectful registration of NgModules by their ids.

PR Close #38303
2020-07-30 12:19:35 -07:00
Doug Parker 7f8c2225f2 fix(compiler): mark `NgModuleFactory` construction as not side effectful (#38147)
This allows Closure compiler to tree shake unused constructor calls to `NgModuleFactory`, which is otherwise considered
side-effectful. The Angular compiler generates factory objects which are exported but typically not used, as they are
only needed for compatibility with View Engine. This results in top-level constructor calls, such as:

```typescript
export const FooNgFactory = new NgModuleFactory(Foo);
```

`NgModuleFactory` has a side-effecting constructor, so this statement cannot be tree shaken, even if `FooNgFactory` is
never imported. The `NgModuleFactory` continues to reference its associated `NgModule` and prevents the module and all
its unused dependencies from being tree shaken. This effectively prevents all components from being tree shaken, making
Closure builds significantly larger than they should be.

The fix here is to wrap `NgModuleFactory` constructor with `noSideEffects(() => /* ... */)`, which tricks the Closure
compiler into assuming that the invoked function has no side effects. This allows it to tree-shake unused
`NgModuleFactory()` constructors when they aren't imported. Since the factory can be removed, the module can also be
removed (if nothing else references it), thus tree shaking unused components as expected.

PR Close #38147
2020-07-29 13:32:08 -07:00
Doug Parker 887c350f9d refactor(compiler): wrap large strings in function (#38253)
Large strings constants are now wrapped in a function which is called whenever used. This works around a unique
limitation of Closure, where it will **always** inline string literals at **every** usage, regardless of how large the
string literal is or how many times it is used.The workaround is to use a function rather than a string literal.
Closure has differently inlining semantics for functions, where it will check the length of the function and the number
of times it is used before choosing to inline it. By using a function, `ngtsc` makes Closure more conservative about
inlining large strings, and avoids blowing up the bundle size.This optimization is only used if the constant is a large
string. A wrapping function is not included for other use cases, since it would just increase the bundle size and add
unnecessary runtime performance overhead.

PR Close #38253
2020-07-29 13:31:03 -07:00
Andrea Canciani 9c8bc4a239 fix(common): narrow `NgIf` context variables in template type checker (#36627)
When the `NgIf` directive is used in a template, its context variables
can be used to capture the bound value. This is sometimes used in
complex expressions, where the resulting value is captured in a
context variable. There's two syntax forms available:

1. Binding to `NgIfContext.ngIf` using the `as` syntax:
```html
<span *ngIf="enabled && user as u">{{u.name}}</span>
```

2. Binding to `NgIfContext.$implicit` using the `let` syntax:
```html
<span *ngIf="enabled && user; let u">{{u.name}}</span>
```

Because of the semantics of `ngIf`, it is known that the captured
context variable is truthy, however the template type checker
would not consider them as such and still report errors when
`strict` is enabled.

This commit updates `NgIf`'s context guard to make the types of the
context variables truthy, avoiding the issue.

Based on https://github.com/angular/angular/pull/35125

PR Close #36627
2020-07-29 10:30:44 -07:00
Andrew Kushnir 8e5969bb52 fix(compiler): share identical stylesheets between components in the same file (#38213)
Prior to this commit, duplicated styles defined in multiple components in the same file were not
shared between components, thus causing extra payload size. This commit updates compiler logic to
use `ConstantPool` for the styles (while generating the `styles` array on component def), which
enables styles sharing when needed (when duplicates styles are present).

Resolves #38204.

PR Close #38213
2020-07-27 10:04:30 -07:00
Pete Bacon Darwin 6b311552f0 fix(compiler-cli): ensure file_system handles mixed Windows drives (#37959)
The `fs.relative()` method assumed that the file-system is a single tree,
which is not the case in Windows, where you can have multiple drives,
e.g. `C:`, `D:` etc.

This commit changes `fs.relative()` so that it no longer forces the result
to be a `PathSegment` and then flows that refactoring through the rest of
the compiler-cli (and ngcc).  The main difference is that now, in some cases,
we needed to check whether the result is "rooted", i.e an `AbsoluteFsPath`,
rather than a `PathSegment`, before using it.

Fixes #36777

PR Close #37959
2020-07-13 12:05:21 -07:00
crisbeto 9322b9a060 fix(compiler): check more cases for pipe usage inside host bindings (#37883)
Builds on top of #34655 to support more cases that could be using a pipe inside host bindings (e.g. ternary expressions or function calls).

Fixes #37610.

PR Close #37883
2020-07-10 11:00:20 -07:00
JoostK 712f1bd0b7 feat(compiler-cli): explain why an expression cannot be used in AOT compilations (#37587)
During AOT compilation, the value of some expressions need to be known at
compile time. The compiler has the ability to statically evaluate expressions
the best it can, but there can be occurrences when an expression cannot be
evaluated statically. For instance, the evaluation could depend on a dynamic
value or syntax is used that the compiler does not understand. Alternatively,
it is possible that an expression could be statically evaluated but the
resulting value would be of an incorrect type.

In these situations, it would be helpful if the compiler could explain why it
is unable to evaluate an expression. To this extend, the static interpreter
in Ivy keeps track of a trail of `DynamicValue`s which follow the path of nodes
that were considered all the way to the node that causes an expression to be
considered dynamic. Up until this commit, this rich trail of information was
not surfaced to a developer so the compiler was of little help to explain
why static evaluation failed, resulting in situations that are hard to debug
and resolve.

This commit adds much more insight to the diagnostic that is produced for static
evaluation errors. For dynamic values, the trail of `DynamicValue` instances
is presented to the user in a meaningful way. If a value is available but not
of the correct type, the type of the resolved value is shown.

Resolves FW-2155

PR Close #37587
2020-06-25 14:16:35 -07:00
Alex Rickabaugh 5103d908c8 perf(compiler-cli): fix regressions in incremental program reuse (#37641)
Commit 4213e8d5 introduced shim reference tagging into the compiler, and
changed how the `TypeCheckProgramHost` worked under the hood during the
creation of a template type-checking program. This work enabled a more
incremental flow for template type-checking, but unintentionally introduced
several regressions in performance, caused by poor incrementality during
`ts.Program` creation.

1. The `TypeCheckProgramHost` was made to rely on the `ts.CompilerHost` to
   retrieve instances of `ts.SourceFile`s from the original program. If the
   host does not return the original instance of such files, but instead
   creates new instances, this has two negative effects: it incurs
   additional parsing time, and it interferes with TypeScript's ability to
   reuse information about such files.

2. During the incremental creation of a `ts.Program`, TypeScript compares
   the `referencedFiles` of `ts.SourceFile` instances from the old program
   with those in the new program. If these arrays differ, TypeScript cannot
   fully reuse the old program. The implementation of reference tagging
   introduced in 4213e8d5 restores the original `referencedFiles` array
   after a `ts.Program` is created, which means that future incremental
   operations involving that program will always fail this comparison,
   effectively limiting the incrementality TypeScript can achieve.

Problem 1 exacerbates problem 2: if a new `ts.SourceFile` is created by the
host after shim generation has been disabled, it will have an untagged
`referencedFiles` array even if the original file's `referencedFiles` was
not restored, triggering problem 2 when creating the template type-checking
program.

To fix these issues, `referencedFiles` arrays are now restored on the old
`ts.Program` prior to the creation of a new incremental program. This allows
TypeScript to get the most out of reusing the old program's data.

Additionally, the `TypeCheckProgramHost` now uses the original `ts.Program`
to retrieve original instances of `ts.SourceFile`s where possible,
preventing issues when a host would otherwise return fresh instances.

Together, these fixes ensure that program reuse is as incremental as
possible, and tests have been added to verify this for certain scenarios.

An optimization was further added to prevent the creation of a type-checking
`ts.Program` in the first place if no type-checking is necessary.

PR Close #37641
2020-06-25 14:12:20 -07:00
Paul Gschwendtner 97dc85ba5e feat(core): support injection token as predicate in queries (#37506)
Currently Angular internally already handles `InjectionToken` as
predicates for queries. This commit exposes this as public API as
developers already relied on this functionality but currently use
workarounds to satisfy the type constraints (e.g. `as any`).

We intend to make this public as it's low-effort to support, and
it's a significant key part for the use of light-weight tokens as
described in the upcoming guide: https://github.com/angular/angular/pull/36144.

In concrete, applications might use injection tokens over classes
for both optional DI and queries, because otherwise such references
cause classes to be always retained. This was also an issue in View
Engine, but now with Ivy, this pattern became worse, as factories are
directly attached to retained classes (ultimately ending up in the
production bundle, while being unused).

More details in the light-weight token guide and in: https://github.com/angular/angular-cli/issues/16866.

Closes #21152. Related to #36144.

PR Close #37506
2020-06-11 13:21:11 -07:00
Alex Rickabaugh 965a688c97 fix(compiler-cli): use ModuleWithProviders type if static eval fails (#37126)
When the compiler encounters a function call within an NgModule imports
section, it attempts to resolve it to an NgModule-annotated class by
looking at the function body and evaluating the statements there. This
evaluation can only understand simple functions which have a single
return statement as their body. If the function the user writes is more
complex than that, the compiler won't be able to understand it and
previously the PartialEvaluator would return a "DynamicValue" for
that import.

With this change, in the event the function body resolution fails the
PartialEvaluator will now attempt to use its foreign function resolvers to
determine the correct result from the function's type signtaure instead. If
the function is annotated with a correct ModuleWithProviders type, the
compiler will be able to understand the import without static analysis of
the function body.

PR Close #37126
2020-06-03 13:23:16 -07:00
Joey Perrott d1ea1f4c7f build: update license headers to reference Google LLC (#37205)
Update the license headers throughout the repository to reference Google LLC
rather than Google Inc, for the required license headers.

PR Close #37205
2020-05-26 14:26:58 -04:00
Alan Agius 13ba84731f build: prepare for TypeScript 3.9 (#36989)
- Fix several compilation errors
- Update @microsoft/api-extractor to be compatible with TypeScript 3.9

PR Close #36989
2020-05-14 10:50:28 -07:00
Ayaz Hafiz eb34aa551a feat(compiler): add name spans for property reads and method calls (#36826)
ASTs for property read and method calls contain information about
the entire span of the expression, including its receiver. Use cases
like a language service and compile error messages may be more
interested in the span of the direct identifier for which the
expression is constructed (i.e. an accessed property). To support this,
this commit adds a `nameSpan` property on

- `PropertyRead`s
- `SafePropertyRead`s
- `PropertyWrite`s
- `MethodCall`s
- `SafeMethodCall`s

The `nameSpan` property already existed for `BindingPipe`s.

This commit also updates usages of these expressions' `sourceSpan`s in
Ngtsc and the langauge service to use `nameSpan`s where appropriate.

PR Close #36826
2020-05-08 14:42:42 -07:00
Alex Rickabaugh 42d1091d6a fix(compiler-cli): don't try to tag non-ts files as shims (#36987)
Some projects include .js source files (via the TypeScript allowJs option).
Previously, the compiler would attempt to tag these files for shims, which
caused errors as the regex used to create shim filenames assumes a .ts file.
This commit fixes the bug by filtering out non-ts files during tagging.

PR Close #36987
2020-05-07 14:45:05 -07:00
Paul Gschwendtner 4c92cf43cf feat(compiler-cli): report error if undecorated class with Angular features is discovered (#36921)
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.

To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.

We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.

Resolves FW-2130.

PR Close #36921
2020-05-06 15:06:10 -07:00
Igor Minar d578ab8f3c build: simplify package.jsons for all of our packages (#36944)
We can remove all of the entry point resolution configuration from the package.json
in our source code as ng_package rule adds the properties automatically and correctly
configures them.

This change simplifies our code base but doesn't have any impact on the package.json
in the distributed npm_packages.

PR Close #36944
2020-05-06 13:54:26 -07:00
Alex Rickabaugh ecffc3557f perf(compiler-cli): perform template type-checking incrementally (#36211)
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.

Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
  prior work.

Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked.

3. (Build #2 main program): throw away old .ngtypecheck files and generate
   new empty ones.

4. (Build #2 type-check program): same as step 2.

With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked, and the
   metadata registered in the `IncrementalDriver`.

3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
   .ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
   the construction of build #2's main program. Some of the contents of
   these files might be stale (if a component's template changed, for
   example), but wholesale reuse here prevents unnecessary changes in the
   contents of the program at this point and makes TypeScript's job a lot
   easier.

4. (Build #2 type-check program): For those input files which have not
   "logically changed" (meaning components within are semantically the same
   as they were before), the compiler will re-use the type-check file
   metadata from build #1, and _not_ generate a new .ngtypecheck shim.
   For components which have logically changed or where the previous
   .ngtypecheck contents cannot otherwise be reused, code generation happens
   as before.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh b861e9c0ac perf(compiler-cli): split Ivy template type-checking into multiple files (#36211)
As a performance optimization, this commit splits the single
__ngtypecheck__.ts file which was previously added to the user's program as
a container for all template type-checking code into multiple .ngtypecheck
shim files, one for each original file in the user's program.

In larger applications, the generation, parsing, and checking of this single
type-checking file was a huge performance bottleneck, with the file often
exceeding 1 MB in text content. Particularly in incremental builds,
regenerating this single file for the entire application proved especially
expensive.

This commit introduces a new strategy for template type-checking code which
makes use of a new interface, the `TypeCheckingProgramStrategy`. This
interface abstracts the process of creating a new `ts.Program` to type-check
a particular compilation, and allows the mechanism there to be kept separate
from the more complex logic around dealing with multiple .ngtypecheck files.

A new `TemplateTypeChecker` hosts that logic and interacts with the
`TypeCheckingProgramStrategy` to actually generate and return diagnostics.
The `TypeCheckContext` class, previously the workhorse of template type-
checking, is now solely focused on collecting and generating type-checking
file contents.

A side effect of implementing the new `TypeCheckingProgramStrategy` in this
way is that the API is designed to be suitable for use by the Angular
Language Service as well. The LS also needs to type-check components, but
has its own method for constructing a `ts.Program` with type-checking code.

Note that this commit does not make the actual checking of templates at all
_incremental_ just yet. That will happen in a future commit.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh 4213e8d5f0 fix(compiler): switch to 'referencedFiles' for shim generation (#36211)
Shim generation was built on a lie.

Shims are files added to the program which aren't original files authored by
the user, but files authored effectively by the compiler. These fall into
two categories: files which will be generated (like the .ngfactory shims we
generate for View Engine compatibility) as well as files used internally in
compilation (like the __ng_typecheck__.ts file).

Previously, shim generation was driven by the `rootFiles` passed to the
compiler as input. These are effectively the `files` listed in the
`tsconfig.json`. Each shim generator (e.g. the `FactoryGenerator`) would
examine the `rootFiles` and produce a list of shim file names which it would
be responsible for generating. These names would then be added to the
`rootFiles` when the program was created.

The fatal flaw here is that `rootFiles` does not always account for all of
the files in the program. In fact, it's quite rare that it does. Users don't
typically specify every file directly in `files`. Instead, they rely on
TypeScript, during program creation, starting with a few root files and
transitively discovering all of the files in the program.

This happens, however, during `ts.createProgram`, which is too late to add
new files to the `rootFiles` list.

As a result, shim generation was only including shims for files actually
listed in the `tsconfig.json` file, and not for the transitive set of files
in the user's program as it should.

This commit completely rewrites shim generation to use a different technique
for adding files to the program, inspired by View Engine's shim generator.
In this new technique, as the program is being created and `ts.SourceFile`s
are being requested from the `NgCompilerHost`, shims for those files are
generated and a reference to them is patched onto the original file's
`ts.SourceFile.referencedFiles`. This causes TS to think that the original
file references the shim, and causes the shim to be included in the program.
The original `referencedFiles` array is saved and restored after program
creation, hiding this little hack from the rest of the system.

The new shim generation engine differentiates between two kinds of shims:
top-level shims (such as the flat module entrypoint file and
__ng_typecheck__.ts) and per-file shims such as ngfactory or ngsummary
files. The former are included via `rootFiles` as before, the latter are
included via the `referencedFiles` of their corresponding original files.

As a result of this change, shims are now correctly generated for all files
in the program, not just the ones named in `tsconfig.json`.

A few mitigating factors prevented this bug from being realized until now:

* in g3, `files` does include the transitive closure of files in the program
* in CLI apps, shims are not really used

This change also makes use of a novel technique for associating information
with source files: the use of an `NgExtension` `Symbol` to patch the
information directly onto the AST object. This is used in several
circumstances:

* For shims, metadata about a `ts.SourceFile`'s status as a shim and its
  origins are held in the extension data.
* For original files, the original `referencedFiles` are stashed in the
  extension data for later restoration.

The main benefit of this technique is a lot less bookkeeping around `Map`s
of `ts.SourceFile`s to various kinds of data, which need to be tracked/
invalidated as part of incremental builds.

This technique is based on designs used internally in the TypeScript
compiler and is serving as a prototype of this design in ngtsc. If it works
well, it could have benefits across the rest of the compiler.

PR Close #36211
2020-05-05 18:40:42 -07:00
Alex Rickabaugh bab90a7709 fix(compiler-cli): fix bug tracking indirect NgModule dependencies (#36211)
The compiler needs to track the dependencies of a component, including any
NgModules which happen to be present in a component's scope. If an upstream
NgModule changes, any downstream components need to have their templates
re-compiled and re-typechecked.

Previously, the compiler handled this well for the A -> B -> C case where
module A imports module B which re-exports module C. However, it fell apart
in the A -> B -> C -> D case, because previously tracking focused on changes
to components/directives in the scope, and not NgModules specifically.

This commit introduces logic to track which NgModules contributed to a given
scope, and treat them as dependencies of any components within.

This logic also contains a bug, which is intentional for now. It
purposefully does not track transitive dependencies of the NgModules which
contribute to a scope. If it did, using the current dependency system, this
would treat all components and directives (even those not exported into the
scope) as dependencies, causing a major performance bottleneck. Only those
dependencies which contributed to the module's export scope should be
considered, but the current system is incapable of making this distinction.
This will be fixed at a later date.

PR Close #36211
2020-05-05 18:40:42 -07:00
JoostK 4aa4e6fd03 fix(compiler): handle type references to namespaced symbols correctly (#36106)
When the compiler needs to convert a type reference to a value
expression, it may encounter a type that refers to a namespaced symbol.
Such namespaces need to be handled specially as there's various forms
available. Consider a namespace named "ns":

1. One can refer to a namespace by itself: `ns`. A namespace is only
   allowed to be used in a type position if it has been merged with a
   class, but even if this is the case it may not be possible to convert
   that type into a value expression depending on the import form. More
   on this later (case a below)
2. One can refer to a type within the namespace: `ns.Foo`. An import
   needs to be generated to `ns`, from which the `Foo` property can then
   be read.
3. One can refer to a type in a nested namespace within `ns`:
   `ns.Foo.Bar` and possibly even deeper nested. The value
   representation is similar to case 2, but includes additional property
   accesses.

The exact strategy of how to deal with these cases depends on the type
of import used. There's two flavors available:

a. A namespaced import like `import * as ns from 'ns';` that creates
   a local namespace that is irrelevant to the import that needs to be
   generated (as said import would be used instead of the original
   import).

   If the local namespace "ns" itself is referred to in a type position,
   it is invalid to convert it into a value expression. Some JavaScript
   libraries publish a value as default export using `export = MyClass;`
   syntax, however it is illegal to refer to that value using "ns".
   Consequently, such usage in a type position *must* be accompanied by
   an `@Inject` decorator to provide an explicit token.

b. An explicit namespace declaration within a module, that can be
   imported using a named import like `import {ns} from 'ns';` where the
   "ns" module declares a namespace using `declare namespace ns {}`.
   In this case, it's the namespace itself that needs to be imported,
   after which any qualified references into the namespace are converted
   into property accesses.

Before this change, support for namespaces in the type-to-value
conversion was limited and only worked  correctly for a single qualified
name using a namespace import (case 2a). All other cases were either
producing incorrect code or would crash the compiler (case 1a).

Crashing the compiler is not desirable as it does not indicate where
the issue is. Moreover, the result of a type-to-value conversion is
irrelevant when an explicit injection token is provided using `@Inject`,
so referring to a namespace in a type position (case 1) could still be
valid.

This commit introduces logic to the type-to-value conversion to be able
to properly deal with all type references to namespaced symbols.

Fixes #36006
Resolves FW-1995

PR Close #36106
2020-04-09 11:32:21 -07:00
Alex Rickabaugh 0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
Ayaz Hafiz e893c5a330 fix(compiler-cli): pass real source spans where they are empty (#31805)
Some consumers of functions that take `ParseSourceSpan`s currently pass
empty and incorrect source spans. This fixes those cases.

PR Close #31805
2020-04-06 09:28:27 -07:00
JoostK 32ce8b1326 feat(compiler): add dependency info and ng-content selectors to metadata (#35695)
This commit augments the `FactoryDef` declaration of Angular decorated
classes to contain information about the parameter decorators used in
the constructor. If no constructor is present, or none of the parameters
have any Angular decorators, then this will be represented using the
`null` type. Otherwise, a tuple type is used where the entry at index `i`
corresponds with parameter `i`. Each tuple entry can be one of two types:

1. If the associated parameter does not have any Angular decorators,
   the tuple entry will be the `null` type.
2. Otherwise, a type literal is used that may declare at least one of
   the following properties:
   - "attribute": if `@Attribute` is present. The injected attribute's
   name is used as string literal type, or the `unknown` type if the
   attribute name is not a string literal.
   - "self": if `@Self` is present, always of type `true`.
   - "skipSelf": if `@SkipSelf` is present, always of type `true`.
   - "host": if `@Host` is present, always of type `true`.
   - "optional": if `@Optional` is present, always of type `true`.

   A property is only present if the corresponding decorator is used.

   Note that the `@Inject` decorator is currently not included, as it's
   non-trivial to properly convert the token's value expression to a
   type that is valid in a declaration file.

Additionally, the `ComponentDefWithMeta` declaration that is created for
Angular components has been extended to include all selectors on
`ng-content` elements within the component's template.

This additional metadata is useful for tooling such as the Angular
Language Service, as it provides the ability to offer suggestions for
directives/components defined in libraries. At the moment, such
tooling extracts the necessary information from the _metadata.json_
manifest file as generated by ngc, however this metadata representation
is being replaced by the information emitted into the declaration files.

Resolves FW-1870

PR Close #35695
2020-03-24 14:21:42 -07:00
ayazhafiz df890d7629 fix(compiler): record correct end of expression (#34690)
This commit fixes a bug with the expression parser wherein the end index
of an expression node was recorded as the start index of the next token,
not the end index of the current token.

Closes #33477
Closes https://github.com/angular/vscode-ng-language-service/issues/433

PR Close #34690
2020-03-20 10:19:02 -07:00
Alex Rickabaugh e3ecdc6a63 feat(bazel): transform generated shims (in Ivy) with tsickle (#35975)
Currently, when Angular code is built with Bazel and with Ivy, generated
factory shims (.ngfactory files) are not processed via the majority of
tsickle's transforms. This is a subtle effect of the build infrastructure,
but it boils down to a TsickleHost method `shouldSkipTsickleProcessing`.

For ngc_wrapped builds (Bazel + Angular), this method is defined in the
`@bazel/typescript` (aka bazel rules_typescript) implementation of
`CompilerHost`. The default behavior is to skip tsickle processing for files
which are not present in the original `srcs[]` of the build rule. In
Angular's case, this includes all generated shim files.

For View Engine factories this is probably desirable as they're quite
complex and they've never been tested with tsickle. Ivy factories however
are smaller and very straightforward, and it makes sense to treat them like
any other output.

This commit adjusts two independent implementations of
`shouldSkipTsickleProcessing` to enable transformation of Ivy shims:

* in `@angular/bazel` aka ngc_wrapped, the upstream `@bazel/typescript`
  `CompilerHost` is patched to treat .ngfactory files the same as their
  original source file, with respect to tsickle processing.

  It is currently not possible to test this change as we don't have any test
  that inspects tsickle output with bazel. It will be extensively tested in
  g3.

* in `ngc`, Angular's own implementation is adjusted to allow for the
  processing of shims when compiling with Ivy. This enables a unit test to
  be written to validate the correct behavior of tsickle when given a host
  that's appropriately configured to process factory shims.

For ngtsc-as-a-plugin, a similar fix will need to be submitted upstream in
tsc_wrapped.

PR Close #35848

PR Close #35975
2020-03-17 10:17:28 -07:00
Keen Yee Liau 31bec8ce61 feat(compiler): Propagate source span and value span to Variable AST (#36047)
This commit propagates the `sourceSpan` and `valueSpan` of a `VariableBinding`
in a microsyntax expression to `ParsedVariable`, and subsequently to
View Engine Variable AST and Ivy Variable AST.

Note that this commit does not propagate the `keySpan`, because it involves
significant changes to the template AST.

PR Close #36047
2020-03-16 10:52:57 -07:00
Andrew Kushnir 0bf6e58db2 fix(compiler): process `imports` first and `declarations` second while calculating scopes (#35850)
Prior to this commit, while calculating the scope for a module, Ivy compiler processed `declarations` field first and `imports` after that. That results in a couple issues:

* for Pipes with the same `name` and present in `declarations` and in an imported module, Pipe from imported module was selected. In View Engine the logic is opposite: Pipes from `declarations` field receive higher priority.
* for Directives with the same selector and present in `declarations` and in an imported module, we first invoked the logic of a Directive from `declarations` field and after that - imported Directive logic. In View Engine, it was the opposite and the logic of a Directive from the `declarations` field was invoked last.

In order to align Ivy and View Engine behavior, this commit updates the logic in which we populate module scope: we first process all imports and after that handle `declarations` field. As a result, in Ivy both use-cases listed above work similar to View Engine.

Resolves #35502.

PR Close #35850
2020-03-10 14:16:59 -04:00
Matias Niemelä 15482e7367 Revert "feat(bazel): transform generated shims (in Ivy) with tsickle (#35848)" (#35970)
This reverts commit 9ff9a072e6.

PR Close #35970
2020-03-09 17:00:14 -04:00