Commit Graph

15 Commits

Author SHA1 Message Date
JoostK 712f1bd0b7 feat(compiler-cli): explain why an expression cannot be used in AOT compilations (#37587)
During AOT compilation, the value of some expressions need to be known at
compile time. The compiler has the ability to statically evaluate expressions
the best it can, but there can be occurrences when an expression cannot be
evaluated statically. For instance, the evaluation could depend on a dynamic
value or syntax is used that the compiler does not understand. Alternatively,
it is possible that an expression could be statically evaluated but the
resulting value would be of an incorrect type.

In these situations, it would be helpful if the compiler could explain why it
is unable to evaluate an expression. To this extend, the static interpreter
in Ivy keeps track of a trail of `DynamicValue`s which follow the path of nodes
that were considered all the way to the node that causes an expression to be
considered dynamic. Up until this commit, this rich trail of information was
not surfaced to a developer so the compiler was of little help to explain
why static evaluation failed, resulting in situations that are hard to debug
and resolve.

This commit adds much more insight to the diagnostic that is produced for static
evaluation errors. For dynamic values, the trail of `DynamicValue` instances
is presented to the user in a meaningful way. If a value is available but not
of the correct type, the type of the resolved value is shown.

Resolves FW-2155

PR Close #37587
2020-06-25 14:16:35 -07:00
Joey Perrott d1ea1f4c7f build: update license headers to reference Google LLC (#37205)
Update the license headers throughout the repository to reference Google LLC
rather than Google Inc, for the required license headers.

PR Close #37205
2020-05-26 14:26:58 -04:00
Alex Rickabaugh 0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
Alex Rickabaugh 498a2ffba3 fix(ivy): don't produce template diagnostics when scope is invalid (#34460)
Previously, ngtsc would perform scope analysis (which directives/pipes are
available inside a component's template) and template type-checking of that
template as separate steps. If a component's scope was somehow invalid (e.g.
its NgModule imported something which wasn't another NgModule), the
component was treated as not having a scope. This meant that during template
type-checking, errors would be produced for any invalid expressions/usage of
other components that should have been in the scope.

This commit changes ngtsc to skip template type-checking of a component if
its scope is erroneous (as opposed to not present in the first place). Thus,
users aren't overwhelmed with diagnostic errors for the template and are
only informed of the root cause of the problem: an invalid NgModule scope.

Fixes #33849

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh 763f8d470a fix(ivy): validate the NgModule declarations field (#34404)
This commit adds three previously missing validations to
NgModule.declarations:

1. It checks that declared classes are actually within the current
   compilation.

2. It checks that declared classes are directives, components, or pipes.

3. It checks that classes are declared in at most one NgModule.

PR Close #34404
2019-12-17 11:39:48 -08:00
Alex Rickabaugh b54ed980ed fix(ivy): retain JIT metadata unless JIT mode is explicitly disabled (#33671)
NgModules in Ivy have a definition which contains various different bits
of metadata about the module. In particular, this metadata falls into two
categories:

* metadata required to use the module at runtime (for bootstrapping, etc)
in AOT-only applications.
* metadata required to depend on the module from a JIT-compiled app.

The latter metadata consists of the module's declarations, imports, and
exports. To support JIT usage, this metadata must be included in the
generated code, especially if that code is shipped to NPM. However, because
this metadata preserves the entire NgModule graph (references to all
directives and components in the app), it needs to be removed during
optimization for AOT-only builds.

Previously, this was done with a clever design:

1. The extra metadata was added by a function called `setNgModuleScope`.
A call to this function was generated after each NgModule.
2. This function call was marked as "pure" with a comment and used
`noSideEffects` internally, which causes optimizers to remove it.

The effect was that in dev mode or test mode (which use JIT), no optimizer
runs and the full NgModule metadata was available at runtime. But in
production (presumably AOT) builds, the optimizer runs and removes the JIT-
specific metadata.

However, there are cases where apps that want to use JIT in production, and
still make an optimized build. In this case, the JIT-specific metadata would
be erroneously removed. This commit solves that problem by adding an
`ngJitMode` global variable which guards all `setNgModuleScope` calls. An
optimizer can be configured to statically define this global to be `false`
for AOT-only builds, causing the extra metadata to be stripped.

A configuration for Terser used by the CLI is provided in `tooling.ts` which
sets `ngJitMode` to `false` when building AOT apps.

PR Close #33671
2019-11-20 12:55:43 -08:00
Kara Erickson fc93dafab1 refactor(core): rename ngModuleDef to ɵmod (#33142)
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
JoostK 3a2b195a58 feat(ivy): translate type-check diagnostics to their original source (#30181)
PR Close #30181
2019-07-25 16:36:32 -07:00
Pete Bacon Darwin 7186f9c016 refactor(ivy): implement a virtual file-system layer in ngtsc + ngcc (#30921)
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).

For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.

The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.

You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.

Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.

All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:

* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.

All ngcc and ngtsc source and tests now use this virtual file-system setup.

PR Close #30921
2019-06-25 16:25:24 -07:00
Ben Lesh d7eaae6f22 refactor(ivy): Move instructions back to ɵɵ (#30546)
There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character

So back to the frog eyes we go.

```
    __
   /ɵɵ\
  ( -- ) - I am ineffable. I am forever.
 _/    \_
/  \  /  \
==  ==  ==
```

PR Close #30546
2019-05-20 16:37:47 -07:00
Ben Lesh cf86ed7b29 refactor(ivy): migrate ɵɵ prefix back to Δ (#30362)
Now that issues are resolved with Closure compiler, we can move back to our desired prefix of `Δ`.

PR Close #30362
2019-05-14 16:52:15 -07:00
Alex Rickabaugh b0578061ce refactor(ivy): use ɵɵ instead of Δ for now (#29850)
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.

This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.

PR Close #29850
2019-04-11 16:27:56 -07:00
Ben Lesh 138ca5a246 refactor(ivy): prefix all generated instructions (#29692)
- Updates all instructions to be prefixed with the Greek delta symbol

PR Close #29692
2019-04-10 12:11:40 -07:00
JoostK 45c6360e5a feat(ivy): emit module scope metadata using pure function call (#29598)
Prior to this change, all module metadata would be included in the
`defineNgModule` call that is set as the `ngModuleDef` field of module
types. Part of the metadata is scope information like declarations,
imports and exports that is used for computing the transitive module
scope in JIT environments, preventing those references from being
tree-shaken for production builds.

This change moves the metadata for scope computations to a pure function
call that patches the scope references onto the module type. Because the
function is marked pure, it may be tree-shaken out during production builds
such that references to declarations and exports are dropped, which in turn
allows for tree-shaken any declaration that is not otherwise referenced.

Fixes #28077, FW-1035

PR Close #29598
2019-04-02 16:03:54 -07:00
Alex Rickabaugh c37ec8b255 fix(ivy): produce ts.Diagnostics for NgModule scope errors (#29191)
Previously, when the NgModule scope resolver discovered semantic errors
within a users NgModules, it would throw assertion errors. TODOs in the
codebase indicated these should become ts.Diagnostics eventually.

Besides producing better-looking errors, there is another reason to make
this change asap: these assertions were shadowing actual errors, via an
interesting mechanism:

1) a component would produce a ts.Diagnostic during its analyze() step
2) as a result, it wouldn't register component metadata with the scope
   resolver
3) the NgModule for the component references it in exports, which was
   detected as an invalid export (no metadata registering it as a
   component).
4) the resulting assertion error would crash the compiler, hiding the
   real cause of the problem (an invalid component).

This commit should mitigate this problem by converting scoping errors to
proper ts.Diagnostics. Additionally, we should consider registering some
marker indicating a class is a directive/component/pipe without actually
requiring full metadata to be produced for it, which would allow suppression
of errors like "invalid export" for such invalid types.

PR Close #29191
2019-03-08 14:21:48 -08:00