Some projects include .js source files (via the TypeScript allowJs option).
Previously, the compiler would attempt to tag these files for shims, which
caused errors as the regex used to create shim filenames assumes a .ts file.
This commit fixes the bug by filtering out non-ts files during tagging.
PR Close#36987
In past versions of the View Engine compiler, we added a warning that is
printed whenever the compiler comes across an Angular declaration with a
constructor that does not match suitable DI tokens. The warning mentioned
that in `v6.x` it will turn into an actual error.
This actually happened as expected for most cases. e.g. the constructor
of `@NgModule`, `@Component`'s, `@Pipe`'s etc will be checked and an error
will be reported if constructor is not DI compatible.
The warning has never been removed though as it was still relevant for
unprovided injectables, or injectables serialized into summaries of the
Angular compiler.
As of version 10, classes that use Angular features need an Angular decorator.
This includes base classes of services that use the lifecycles Angular feature.
Due to this being a common pattern now, we can remove the warning in
View Engine. The warning is not correct, and also quite confusing as it
mentions the planned removal in `v6.x`.
Resolves FW-2147.
PR Close#36985
Prior to this commit, number input fields would to fire valueChanges twice: once for `input` events when typing and second for the `change` event when the field lost focus (both events happen at once when using the increment and decrement buttons on the number field).
Fixes#12540
BREAKING CHANGE: Number inputs no longer listen to the `change` event.
* Tests which trigger `change` events need to be updated to trigger `input` events instead.
* The `change` event was in place to support IE9, as we found that `input` events were not fired with backspace or cut actions. If you need to maintain IE9 support, you will need to add a change event listener to number inputs and call the `onChange` method of `NumberValueAccessor` manually.
* Lastly, old versions of WebDriver would synthetically trigger the `change` event on `WebElement.clear` and `WebElement.sendKeys`. If you are using an old version of WebDriver, you may need to update tests to ensure `input` events are triggered. For example, you could use `element.sendKeys(Keys.chord(Keys.CONTROL, "a"), Keys.BACK_SPACE);` in place of `element.clear()`.
PR Close#12540
PR Close#36087
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.
PR Close#36859
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.
PR Close#36859
These tests were matching file-paths against what is retrieved from the
TS compiler. But the TS compiler paths have been canonicalised, so the
tests were brittle on case-insensitive file-systems.
PR Close#36859
The type checking infrastrure uses file-paths that may come from the
TS compiler. Such paths will have been canonicalized, and so the type
checking classes must also canonicalize paths when matching.
PR Close#36859
Since the `MockFileSystemWindows` is case-insensitive, any
drive path that must be added to a normalized path should be lower
case to make the path canonical.
PR Close#36859
Previously this class used the file passed in directly to look up files in the
in-memory mock file-system. But this doesn't match the behaviour of
case-insensitive file-systems. Now the look up is done on the canonical
file paths.
PR Close#36859
Previously this method was returning the exact opposite value
than the correct one.
Also, calling `this.exists()` causes an infinite recursions,
so the actual file-system `fs.existsSync()` method is used
to ascertain the case-sensitivity of the file-system.
PR Close#36859
Previously the `getRootDirs()` function was not converting
the root directory paths to their canonical form, which can
cause problems on case-insensitive file-systems.
PR Close#36859
The `getCanonicalFileName()` method was not actually
calling the `useCaseSensitiveFileNames()` method. So
it always returned a case-sensitive canonical filename.
PR Close#36859
Updates the `components-repo-unit-tests` job to
d3a9ac67d2.
We need to update since we added a new diagnostic in ngtsc, and
the given commit in the components repo fixes failures caused by
the new diagnostic.
Note: This commit currently points to a PR as it's unlikely that
this fix lands soon, but we want to move forward. There is no
downside to doing that as the PR is based on top of the latest
components repo `master`.
PR Close#36921
Abstract directives cannot be part of a `@NgModule`, but the AIO dgeni
setup currently enforces this. This commit updates the logic so that
abstract directives are skipped.
PR Close#36921
Enables the `ng update` migrations for v10. Status for individual
migrations:
**undecorated-classes-with-di**.
This migration dealt exlusively with inherited constructors and
cases where a derived component was undecorated. In those cases,
the migration added `@Directive()` or copied the inherited decorator
to the derived class.
We don't need to run this migration again because ngtsc throws if
constructor is inherited from an undecorated class. Also ngtsc will
throw if a NgModule references an undecorated class in the declarations.
***undecorated-classes-with-decorated-fields***
This migration exclusively deals with undecorated classes that use
Angular features but are not decorated. Angular features include
the use of lifecycle hooks or class fields with Angular decorators,
such as `@Input()`.
We want to re-run this migration in v10 as we will disable the
compatibility code in ngtsc that detects such undecorated classes
as `@Directive`.
**module-with-providers**:
This migration adds an explicit generic type to `ModuleWithProviders`.
As of v10, the generic type is required, so we need to re-run the
migration again.
**renderer-to-renderer2**:
We don't need to re-run that migration again as the
renderer has been already removed in v9.
**missing-injectable**:
This migration is exclusively concerned with undecorated
providers referenced in an `NgModule`. We should re-run
that migration again as we don't have proper backsliding
prevention for this yet. We can consider adding an error
in ngtsc for v10, or v11. In either way, we should re-run
the migration.
**dynamic-queries**:
We ran this one in v9 to reduce code complexity in projects. Instead
of explicitly passing `static: false`, not passing any object literal
has the same semantics. We don't need to re-run the migration again
since there is no good way to prevent backsliding and we cannot always
run this migration for future versions (as some apps might actually
intentionally use the explicit `static: false` option).
PR Close#36921
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.
To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.
We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.
Resolves FW-2130.
PR Close#36921
As of v10, undecorated classes using Angular features are no longer
supported. In v10, we plan on removing the undecorated classes
compatibility code in ngtsc. This means that old patterns for
undecorated classes will result in compilation errors.
We had a migration for this in v9 already, but it looks like
the migration does not handle cases where classes uses lifecycle
hooks. This is handled in the ngtsc compatibility code, and we
should handle it similarly in migrations too.
This has not been outlined in the migration plan initially,
but an appendix has been added for v10 to the plan document.
https://hackmd.io/vuQfavzfRG6KUCtU7oK_EA?both.
Note: The migration is unable to determine whether a given undecorated
class that only defines `ngOnDestroy` is a directive or an actual
service. This means that in some cases the migration cannot do
more than adding a TODO and printing an failure.
Certainly there are more ways to determine the type of such classes,
but it would involve metadata and NgModule analysis. This is out of
scope for this migration.
PR Close#36921
In v9, we deprecated the use of ModuleWithProviders
without a generic. In v10, we will be requiring the
generic when using ModuleWithProviders. You can read
more about the reasoning behind this change in the
migration guide:
http://v9.angular.io/guide/migration-module-with-providers
PR Close#36892
This patch is the first of many commits to disable sanitization for
[stlye.prop] and [style] bindings in Angular.
Historically, style-based sanitization has only been required for old
IE browsers (IE6 and IE7). Since Angular does not support these old
browsers at all, there is no reason for the framework to support
style-based sanitization.
PR Close#35621
We stopped publishing @angular/http to npm a while back (v7?), so from the perspective of our
customer @angular/http has been removed a long time ago and mentioninig it now that we actually
removed the code from our repo is just confusing.
PR Close#36944
Since we no longer hardcode the `package.json` for
entry-points, a bug has appeared for `ng_package` in Ivy.
The `package.json` files are populated incorrectly with Ivy
as the flat module bundle name is not propagated from `ng_module`
to the `ng_package` rule. The rule then guesses the index file
to `index.js` and does not respect the flat module bundle shim.
PR Close#36944
As mentioned in previous commits, as of v10 the release output
does no longer contain ESM5 output due to an update to the APF.
This means that the side-effect integration test needs to be
updated as it currently expects/tests esm5 output.
PR Close#36944
As of version 10, libraries following the APF will no longer contain
ESM5 output. Hence, tests in ngcc need to be updated as they currently
rely on the release output of `@angular/core`.
Additionally, we'd need to support in ngcc that the `module`
property of entry-points no longer necessarily refers to
`esm5` output, but instead can also target `esm2015`.
We currently achieve this by checking the path the `module`
property points to. We can do this because as per APF, the
folder name is known for the esm2015 output. Long-term for
more coverage, we want to sniff the format by looking for
known ES2015 constructs in the file `module` refers to.
PR Close#36944
In the past we added support for `ts_library` to `ng_package`. For those
targets we never can determine the "index" file. Unlike `ng_module`,
there is no provider data for flat module bundles, so the `ng_package`
rule assumes that the index file is simply called `index`.
This works as expected, but we also added logic in the past that doesn't
allow `ng_package` to add format properties (e.g. `main`, `module`) to a
`package.json` if a package json is handwritten for such a `ts_library` target.
This has been done that way because we assumed that such `package.json` files
might want to set format properties explicitly to different paths due to a
faulty "index" guess.
We want to change this behavior as most of the time a `package.json`
file already exists with just the module name. In those cases, the
packager should still set the format properties. We should only warn
and skip automatic insertion of the format properties if such a
`package.json` explicitly sets format properties.
PR Close#36944
We can remove all of the entry point resolution configuration from the package.json
in our source code as ng_package rule adds the properties automatically and correctly
configures them.
This change simplifies our code base but doesn't have any impact on the package.json
in the distributed npm_packages.
PR Close#36944
esm5 and fesm5 are no longer needed and have been deprecated in the past.
https://v9.angular.io/guide/deprecations#esm5-and-fesm5-code-formats-in-angular-npm-packages
This commit modifies ng_package to no longer distribute these two formats in npm packages
built by ng_package (e.g. @angular/core).
This commit intentionally doesn't fully clean up the ng_package rule to remove all traces of esm5 and fems5
build artifacts as that is a bigger cleanup and currently we are narrowing down the scope of this change
to the MVP needed for v10, which in this case is 'do not put esm5 and fesm5' into the npm packages.
More cleanup to follow: https://angular-team.atlassian.net/browse/FW-2143
BREAKING CHANGE: esm5 and fesm5 format is no longer distributed in
Angular's npm packages e.g. @angular/core
If you are not using Angular CLI to build your application or library,
and you need to be able to build es5 artifacts, then you will need to
downlevel the distributed Angular code to es5 on your own.
Angular CLI will automatically downlevel the code to es5 if differential
loading is enabled in the Angular project, so no action is required from
Angular CLI users.
PR Close#36944
In #36892 the `ModuleWithProviders` type parameter becomes required.
This exposes a bug in ngcc, where it can only handle functions that have a
specific form:
```
function forRoot() {
return { ... };
}
```
In other words, it only accepts functions that return an object literal.
In some libraries, the function instead returns a call to another function.
For example in `angular-in-memory-web-api`:
```
InMemoryWebApiModule.forFeature = function (dbCreator, options) {
return InMemoryWebApiModule_1.forRoot(dbCreator, options);
};
```
This commit changes the parsing of such functions to use the
`PartialEvaluator`, which can evaluate these more complex function
bodies.
PR Close#36948
Previously this method was implemented on the `NgccReflectionHost`,
but really it is asking too much of the host, since it actually needs to do
some static evaluation of the code to be able to support a wider range
of function shapes. Also there was only one implementation of the method
in the `Esm2015ReflectionHost` since it has no format specific code in
in.
This commit moves the whole function (and supporting helpers) into the
`ModuleWithProvidersAnalyzer`, which is the only place it was being used.
This class will be able to do further static evaluation of the function bodies
in order to support more function shapes than the host can do on its own.
The commit removes a whole set of reflection host tests but these are
already covered by the tests of the analyzer.
PR Close#36948
The purpose of the `WrappedValue` is to allow same object instance to be treated as different for the purposes of change detection. It is currently used with `async` pipe and only with `Observables`. The use case which it covers is if the `Observable` produces the same instance of the value but it is desirable to still try to mark it as changed for the purposes of change detection.
We believe tha the above use case is too rare to warrant special handling in the framework. (Having special handling causes application slowdown for the users and mental load for the developers.) No replacement is planned for this deprecation.
PR Close#36819
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.
Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
prior work.
Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.
1. (Build #1 main program): empty .ngtypecheck files generated for each
original input file.
2. (Build #1 type-check program): .ngtypecheck contents overridden for those
which have corresponding components that need type-checked.
3. (Build #2 main program): throw away old .ngtypecheck files and generate
new empty ones.
4. (Build #2 type-check program): same as step 2.
With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:
1. (Build #1 main program): empty .ngtypecheck files generated for each
original input file.
2. (Build #1 type-check program): .ngtypecheck contents overridden for those
which have corresponding components that need type-checked, and the
metadata registered in the `IncrementalDriver`.
3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
.ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
the construction of build #2's main program. Some of the contents of
these files might be stale (if a component's template changed, for
example), but wholesale reuse here prevents unnecessary changes in the
contents of the program at this point and makes TypeScript's job a lot
easier.
4. (Build #2 type-check program): For those input files which have not
"logically changed" (meaning components within are semantically the same
as they were before), the compiler will re-use the type-check file
metadata from build #1, and _not_ generate a new .ngtypecheck shim.
For components which have logically changed or where the previous
.ngtypecheck contents cannot otherwise be reused, code generation happens
as before.
PR Close#36211
As a performance optimization, this commit splits the single
__ngtypecheck__.ts file which was previously added to the user's program as
a container for all template type-checking code into multiple .ngtypecheck
shim files, one for each original file in the user's program.
In larger applications, the generation, parsing, and checking of this single
type-checking file was a huge performance bottleneck, with the file often
exceeding 1 MB in text content. Particularly in incremental builds,
regenerating this single file for the entire application proved especially
expensive.
This commit introduces a new strategy for template type-checking code which
makes use of a new interface, the `TypeCheckingProgramStrategy`. This
interface abstracts the process of creating a new `ts.Program` to type-check
a particular compilation, and allows the mechanism there to be kept separate
from the more complex logic around dealing with multiple .ngtypecheck files.
A new `TemplateTypeChecker` hosts that logic and interacts with the
`TypeCheckingProgramStrategy` to actually generate and return diagnostics.
The `TypeCheckContext` class, previously the workhorse of template type-
checking, is now solely focused on collecting and generating type-checking
file contents.
A side effect of implementing the new `TypeCheckingProgramStrategy` in this
way is that the API is designed to be suitable for use by the Angular
Language Service as well. The LS also needs to type-check components, but
has its own method for constructing a `ts.Program` with type-checking code.
Note that this commit does not make the actual checking of templates at all
_incremental_ just yet. That will happen in a future commit.
PR Close#36211
Shim generation was built on a lie.
Shims are files added to the program which aren't original files authored by
the user, but files authored effectively by the compiler. These fall into
two categories: files which will be generated (like the .ngfactory shims we
generate for View Engine compatibility) as well as files used internally in
compilation (like the __ng_typecheck__.ts file).
Previously, shim generation was driven by the `rootFiles` passed to the
compiler as input. These are effectively the `files` listed in the
`tsconfig.json`. Each shim generator (e.g. the `FactoryGenerator`) would
examine the `rootFiles` and produce a list of shim file names which it would
be responsible for generating. These names would then be added to the
`rootFiles` when the program was created.
The fatal flaw here is that `rootFiles` does not always account for all of
the files in the program. In fact, it's quite rare that it does. Users don't
typically specify every file directly in `files`. Instead, they rely on
TypeScript, during program creation, starting with a few root files and
transitively discovering all of the files in the program.
This happens, however, during `ts.createProgram`, which is too late to add
new files to the `rootFiles` list.
As a result, shim generation was only including shims for files actually
listed in the `tsconfig.json` file, and not for the transitive set of files
in the user's program as it should.
This commit completely rewrites shim generation to use a different technique
for adding files to the program, inspired by View Engine's shim generator.
In this new technique, as the program is being created and `ts.SourceFile`s
are being requested from the `NgCompilerHost`, shims for those files are
generated and a reference to them is patched onto the original file's
`ts.SourceFile.referencedFiles`. This causes TS to think that the original
file references the shim, and causes the shim to be included in the program.
The original `referencedFiles` array is saved and restored after program
creation, hiding this little hack from the rest of the system.
The new shim generation engine differentiates between two kinds of shims:
top-level shims (such as the flat module entrypoint file and
__ng_typecheck__.ts) and per-file shims such as ngfactory or ngsummary
files. The former are included via `rootFiles` as before, the latter are
included via the `referencedFiles` of their corresponding original files.
As a result of this change, shims are now correctly generated for all files
in the program, not just the ones named in `tsconfig.json`.
A few mitigating factors prevented this bug from being realized until now:
* in g3, `files` does include the transitive closure of files in the program
* in CLI apps, shims are not really used
This change also makes use of a novel technique for associating information
with source files: the use of an `NgExtension` `Symbol` to patch the
information directly onto the AST object. This is used in several
circumstances:
* For shims, metadata about a `ts.SourceFile`'s status as a shim and its
origins are held in the extension data.
* For original files, the original `referencedFiles` are stashed in the
extension data for later restoration.
The main benefit of this technique is a lot less bookkeeping around `Map`s
of `ts.SourceFile`s to various kinds of data, which need to be tracked/
invalidated as part of incremental builds.
This technique is based on designs used internally in the TypeScript
compiler and is serving as a prototype of this design in ngtsc. If it works
well, it could have benefits across the rest of the compiler.
PR Close#36211
The compiler needs to track the dependencies of a component, including any
NgModules which happen to be present in a component's scope. If an upstream
NgModule changes, any downstream components need to have their templates
re-compiled and re-typechecked.
Previously, the compiler handled this well for the A -> B -> C case where
module A imports module B which re-exports module C. However, it fell apart
in the A -> B -> C -> D case, because previously tracking focused on changes
to components/directives in the scope, and not NgModules specifically.
This commit introduces logic to track which NgModules contributed to a given
scope, and treat them as dependencies of any components within.
This logic also contains a bug, which is intentional for now. It
purposefully does not track transitive dependencies of the NgModules which
contribute to a scope. If it did, using the current dependency system, this
would treat all components and directives (even those not exported into the
scope) as dependencies, causing a major performance bottleneck. Only those
dependencies which contributed to the module's export scope should be
considered, but the current system is incapable of making this distinction.
This will be fixed at a later date.
PR Close#36211
Add a mechanism to replace file contents for a specific file. This
allows us to write custom test scenarios in code without modifying the
test project.
Since we are no longer mocking the language service host, the file
overwrite needs to happen via the project service.
Project service manages a set of script infos, and overwriting the files
is a matter of updating the relevant script infos.
Note that the actual project service is wrapped inside a Mock Service.
Tests should not have direct access to the project service. All
manipulations should take place via the Mock Service.
The MockService provides a `reset()` method to undo temporary overwrites
after each test.
PR Close#36923
Previously, some preview server tests were only running for public
builds. In the past, these tests were run for both public and non-public
builds. The non-public builds tests were disabled in #23576, probably
during debugging some failure.
This commit fixes it by ensuring the tests are run for both public and
non-public builds.
PR Close#36837
The test was introduced in #23576, but the behavior the test was
verifying does not match the actual behavior of
`BuildCleaner#getOpenPrNumbers()`.
The reason that the test did not fail is that the verification happened
asynchronously, but the test completed synchronously (by accident).
PR Close#36837
Previously, when the preview server `build-cleanup` script failed, the
error was logged but not reflected to the commands exit code. This seems
to have been accidentally broken in #23576.
This commit fixes it by ensuring the error is re-thrown from the
`BuildCleaner#cleanUp()` method to allow the process to exit with an
error exit code.
PR Close#36837
Previously, the `dev` npm script in `aio/aio-builds-setup/scripts-js/`
(the PR preview server implementation) would run both linting and unit
tests. This was slow and delayed the feedback loop on each change.
Since the `dev` script should be run during development and give
feedback as fast as possible, this commit removes the linting from the
`dev` script and only keeps the unit tests. Linting is still run in the
`test` npm script (which is more comprehensive). Also, in most cases the
developer's IDE will show linting errors in real time in the editor.
PR Close#36837
Update the order in which the `update-preview-server.sh` script expects
its arguments (and the associated docs) to be consistent with the order
of arguments in other commands/docs (such as
`vm-setup--start-docker-container.md`).
PR Close#36837
I recently went through the process of setting up a preview server VM
again and updated the instructions and references based on the latest
docs for Debian, Docker, Google Compute Engine, etc.
PR Close#36837
Previously, in order to remain as deterministic as possible, the
Dockerfile for the preview server Docker image had all dependencies
pinned to specific versions. It turns out that some packages (such as
`nginx`, `nodejs`, and `openssl` - potentially others too) make older
versions unavailable on the repositories once a newer version is
available.
See for example:
- https://github.com/nodesource/distributions/issues/33
- https://askubuntu.com/questions/715104/how-can-i-downgrade-openssl-via-apt-get
This commit, therefore, removes the exact versions for these packages.
The latest versions will be installed everytime the Docker image is
built (subject to Docker caching).
PR Close#36837
In order to ease local development, self-signed SSL/TLS certificates are
created when building the preview server Docker image. These
certificates are valid for 365 days. Thus, it is possible for an old
certificate to be re-used past its expiration date due to Docker's
caching intermediate layers.
Previously, this would lead to hard-to-debug failures in the
`aio-health-check` and `aio-verify-setup` checks. Even after finding out
that the failures were caused by an expired certificate, it was not
obvious why that would be the case.
This commit adds an additional check to the `aio-health-check` command
that checks the certificates' expiration dates. This helps surface such
errors. It also prints a more helpful message, prompting the user to
build the Docker image with the `--no-cache` option to fix the problem
with self-signed certificates.
PR Close#36837
Previously, the preview server Docker image was based on Debian 9
(stretch).
This commit upgrades the preview server Docker image to Debian 10
(buster) and also upgrades all dependencies to latest versions
(including upgrading Node.js from v10 to v12).
(The GCE VM running the preview server Docker container was also
upgraded from Debian 9 to 10 on 2020-04-27.)
---
Other changes:
- Pinned the installed version of `curl` to make the `aio-health-check`
and `aio-verify-setup` checks (which use `curl`) more deterministic.
- Dropped the `*-backports` Debian repositories, since they are no
longer needed. The `*-backports` repositories were introduced in
593fe5ed25 to install `nginx` from, but
became obsolete in 2f1a862b83, which
switched to installing `nginx` from the regular repositories again.
- Added `vim` to the list of installed dependencies (for convenience
during debugging).
PR Close#36837
This commit upgrades all dependencies in `scripts-js/` to latest
versions and also includes all necessary code changes to ensure the
tests are passing with the new dependency versions.
PR Close#36837