This commit adds a few tests to verify that the `onDestroy` callbacks are invoked when `ComponentRef` instance
is destroyed and the logic is consistent between ViewEngine and Ivy.
PR Close#39876
In the new behavior Angular removes applications from the testability registry when the
root view gets destroyed. This eliminates a memory leak, because before that the
TestabilityRegistry holds references to HTML elements, thus they cannot be GCed.
PR Close#22106
PR Close#39876
Currently we convert objects to strings using `'' + value` which is quickest,
but it stringifies the value using its `valueOf`, rather than `toString`. These
changes switch to using `String(value)` which has identical performance
and calls the `toString` method as expected. Note that another option
was calling `toString` directly, but benchmarking showed it to be slower.
I've included the benchmark I used to verify the performance so we have it
for future reference and we can reuse it when making changes to `renderStringify`
in the future.
Also for reference, here are the results of the benchmark:
```
Benchmark: renderStringify
concat: 2.006 ns(0%)
concat with toString: 2.201 ns(-10%)
toString: 237.494 ns(-11741%)
toString with toString: 121.072 ns(-5937%)
constructor: 2.201 ns(-10%)
constructor with toString: 2.201 ns(-10%)
toString mono: 14.536 ns(-625%)
toString with toString mono: 9.757 ns(-386%)
```
Fixes#38839.
PR Close#39843
We currently only wrap the event listener in the function which ensures
ancestors are marked for check when the listener is placed on an element
that has a native method for listening to an event. We actually need to do
this wrapping in all cases so that events that are attached to non-rendered
template items (`ng-template` and `ng-container`) also mark ancestors for check
when they receive the event.
fixes#39832
PR Close#39833
This commit implements partial compilation of components, together with
linking the partial declaration into its full AOT output.
This commit does not yet enable accurate source maps into external
templates. This requires additional work to account for escape sequences
which is non-trivial. Inline templates that were represented using a
string or template literal are transplated into the partial declaration
output, so their source maps should be accurate. Note, however, that
the accuracy of source maps is not currently verified in tests; this is
also left as future work.
The golden files of partial compilation output have been updated to
reflect the generated code for components. Please note that the current
output should not yet be considered stable.
PR Close#39707
To minimize security risk (XSS in particular) in the i18n pipeline,
disallow i18n translation of attributes that are Trusted Types sinks.
Add integration tests to ensure that such sinks cannot be translated.
PR Close#39554
`zone.js` 0.8.25 introduces `zone-testing` bundle and move all `fakeAsync/async` logic
from `@angular/core/testing` to `zone.js` package. But in case some user still using the old
version of `zone.js`, an old version of `fakeAsync/async` logic were still kept inside `@angular/core/testing`
package as `fallback` logic. Since now `Angular8+` already use `zone.js 0.9+`, so
those fallback logic is removed.
PR Close#37879
The codebase currently contains two `getOutlet` functions,
and they can end up in the bundle of an application.
A recent commit 6fbe21941d tipped us off
as it introduced several `noop` occurrences in the golden symbol files.
After investigating with @petebacondarwin,
we decided to remove the duplicated functions.
This probably shaves only a few bytes,
but this commit removes the duplicated functions,
by always using the one in `router/src/utils/config`.
PR Close#39764
This commit fixes a bug when `Attribute` DI decorator is used in the
`deps` section of a token that uses a factory function. The problem
appeared because the `Attribute` DI decorator was not handled correctly
while injecting factory function attributes.
Closes#36479
PR Close#37085
The codebase currently contains several `noop` functions,
and they can end up in the bundle of an application.
A recent commit 6fbe21941d tipped us off
as it introduced several `noop` occurrences in the golden symbol files.
After investigating with @petebacondarwin,
we decided to remove the duplicated functions.
This probably shaves only a few bytes,
but this commit removes the duplicated functions,
by always using the one in `core/src/utils/noop`.
PR Close#39761
`LContainer` stores `ViewRef`s this is not quite right as it creates
circular dependency between the two types. Also `LContainer` should not
be aware of `ViewRef` which iv ViewEngine specific construct.
PR Close#39621
Due to historical reasons `Injector.__NG_ELEMENT_ID__` was set to `-1`.
This changes it to be consistent with other `*Ref.__NG_ELEMENT_ID__`
constructs.
PR Close#39621
`ViewContainerRef` is declared in ViewEngine but it sub-classed in Ivy. This creates a circular
dependency between ViewEngine `ViewContainerRef` which needs to declare `__NG_ELEMENT_ID__` and
ivy factory which needs to create it. The workaround used to be to pass the `ViewContainerRef`
through stack but that created a very convoluted code. This refactoring simply bundles the
two files together and removes the stack workaround making the code simpler to follow.
PR Close#39621
`TemplateRef` is declared in ViewEngine but it sub-classed in Ivy. This creates a circular
dependency between ViewEngine `TemplateRef` which needs to declare `__NG_ELEMENT_ID__` and
ivy factory which needs to create it. The workaround used to be to pass the `TemplateRef`
through stack but that created a very convoluted code. This refactoring simply bundles the
two files together and removes the stack workaround making the code simpler to follow.
PR Close#39621
`ElementRef` is declared in ViewEngine but it sub-classed in Ivy. This creates a circular
dependency between ViewEngine `ElementRef` which needs to declare `__NG_ELEMENT_ID__` and
ivy factory which needs to create it. The workaround used to be to pass the `ElementRef`
through stack but that created a very convoluted code. This refactoring simply bundles the
two files together and removes the stack workaround making the code simpler to follow.
PR Close#39621
Close#39348
Now `NgZone` has an option `shouldCoalesceEventChangeDetection` to coalesce
multiple event handler's change detections to one async change detection.
And there are some cases other than `event handler` have the same issues.
In #39348, the case like this.
```
// This code results in one change detection occurring per
// ngZone.run() call. This is entirely feasible, and can be a serious
// performance issue.
for (let i = 0; i < 100; i++) {
this.ngZone.run(() => {
// do something
});
}
```
So such kind of case will trigger multiple change detections.
And now with Ivy, we have a new `markDirty()` API will schedule
a requestAnimationFrame to trigger change detection and also coalesce
the change detections in the same event loop, `markDirty()` API doesn't
only take care `event handler` but also all other cases `sync/macroTask/..`
So this PR add a new option to coalesce change detections for all cases.
test(core): add test case for shouldCoalesceEventChangeDetection option
Add new test cases for current `shouldCoalesceEventChangeDetection` in `ng_zone.spec`, since
currently we only have integration test for this one.
PR Close#39422
When a `ViewContainerRef` is injected, we dynamically create a comment node next to the host
so that it can be used as an anchor point for inserting views. The comment node is inserted
through the `appendChild` helper from `node_manipulation.ts` in most cases.
The problem with using `appendChild` here is that it has some extra logic which doesn't return
a parent `RNode` if an element is at the root of a component. I __think__ that this is a performance
optimization which is used to avoid inserting an element in one place in the DOM and then
moving it a bit later when it is projected. This can break down in some cases when creating
a `ViewContainerRef` for a non-component node at the root of another component like the following:
```
<root>
<div #viewContainerRef></div>
</root>
```
In this case the `#viewContainerRef` node is at the root of a component so we intentionally don't
insert it, but since its anchor element was created manually, it'll never be projected. This will
prevent any views added through the `ViewContainerRef` from being inserted into the DOM.
These changes resolve the issue by not going through `appendChild` at all when creating a comment
node for `ViewContainerRef`. This should work identically since `appendChild` doesn't really do
anything with the T structures anyway, it only uses them to reach the relevant DOM nodes.
Fixes#39556.
PR Close#39599
Currently when an instance of the `FormControlName` directive is destroyed, the Forms package invokes
the `cleanUpControl` to clear all directive-specific logic (such as validators, onChange handlers,
etc) from a bound control. The logic of the `cleanUpControl` function should revert all setup
performed by the `setUpControl` function. However the `cleanUpControl` is too aggressive and removes
all callbacks related to the onChange and disabled state handling. This is causing problems when
a form control is bound to multiple FormControlName` directives, causing other instances of that
directive to stop working correctly when the first one is destroyed.
This commit updates the cleanup logic to only remove callbacks added while setting up a control
for a given directive instance.
The fix is needed to allow adding `cleanUpControl` function to other places where cleanup is needed
(missing this function calls in some other places causes memory leak issues).
PR Close#39623
* Fixes that the Ivy styling logic wasn't accounting for `!important` in the property value.
* Fixes that the default DOM renderer only sets `!important` on a property with a dash in its name.
* Accounts for the `flags` parameter of `setStyle` in the server renderer.
Fixes#35323.
PR Close#39603
In ViewEngine, SelfSkip would navigate up the tree to get tokens from
the parent node, skipping the child. This restores that functionality in
Ivy. In ViewEngine, if a special token (e.g. ElementRef) was not found
in the NodeInjector tree, the ModuleInjector was also used to lookup
that token. While special tokens like ElementRef make sense only in a
context of a NodeInjector, we preserved ViewEngine logic for now to
avoid breaking changes.
We identified 4 scenarios related to @SkipSelf and special tokens where
ViewEngine behavior was incorrect and is likely due to bugs. In Ivy this
is implemented to provide a more intuitive API. The list of scenarios
can be found below.
1. When Injector is used in combination with @Host and @SkipSelf on the
first Component within a module and the injector is defined in the
module, ViewEngine will get the injector from the module. In Ivy, it
does not do this and throws instead.
2. When retrieving a @ViewContainerRef while @SkipSelf and @Host are
present, in ViewEngine, it throws an exception. In Ivy it returns the
host ViewContainerRef.
3. When retrieving a @ViewContainerRef on an embedded view and @SkipSelf
is present, in ViewEngine, the ref is null. In Ivy it returns the parent
ViewContainerRef.
4. When utilizing viewProviders and providers, a child component that is
nested within a parent component that has @SkipSelf on a viewProvider
value, if that provider is provided by the parent component's
viewProviders and providers, ViewEngine will return that parent's
viewProviders value, which violates how viewProviders' visibility should
work. In Ivy, it retrieves the value from providers, as it should.
These discrepancies all behave as they should in Ivy and are likely bugs
in ViewEngine.
PR Close#39464
Prior to this commit, the `cleanUpControl` function (responsible for cleaning up control instance)
was not taking validators into account. As a result, these validators remain registered on a detached
form control instance, thus causing memory leaks. This commit updates the `cleanUpControl` function
logic to also run validators cleanup.
As a part of this change, the logic to setup and cleanup validators was refactored and moved to
separate functions (with completely opposite behavior), so that they can be reused in the future.
This commit doesn't add the `cleanUpControl` calls to all possible places, it just fixes the cases
where this function is being called, but doesn't fully perform a cleanup. The `cleanUpControl`
function calls will be added to other parts of code (to avoid more memory leaks) in a followup PR.
PR Close#39234
When registering an NgModule based on its id, all transitively imported
NgModules are also registered. This commit introduces a visited set to
avoid traversing into NgModules that are reachable from multiple import
paths multiple times.
Fixes#39487
PR Close#39514
This commit has a small refactor of some methods in create_url_tree.ts
and adds some test cases, including two that will fail at the moment but
should pass. A follow-up commit will make use of the refactorings to fix
the test with minimal changes.
PR Close#39456
Currently expressions `$event.foo()` and `this.$event.foo()`, as well as `$any(foo)` and
`this.$any(foo)`, are treated as the same expression by the compiler, because `this` is considered
the same implicit receiver as when the receiver is omitted. This introduces the following issues:
1. Any time something called `$any` is used, it'll be stripped away, leaving only the first parameter.
2. If something called `$event` is used anywhere in a template, it'll be preserved as `$event`,
rather than being rewritten to `ctx.$event`, causing the value to undefined at runtime. This
applies to listener, property and text bindings.
These changes resolve the first issue and part of the second one by preserving anything that
is accessed through `this`, even if it's one of the "special" ones like `$any` or `$event`.
Furthermore, these changes only expose the `$event` global variable inside event listeners,
whereas previously it was available everywhere.
Fixes#30278.
PR Close#39323
Close#39296
Fix an issue that `markDirty()` will not trigger change detection.
The case is for example we have the following component.
```
export class AppComponent implements OnInit {
constructor(private router: Router) {}
ngOnInit() {
this.router.events
.pipe(filter((e) => e instanceof NavigationEnd))
.subscribe(() => ɵmarkDirty(this));
}
}
export class CounterComponent implements OnInit, OnDestroy {
ngOnInit() {
this.countSubject.pipe(takeUntil(this.destroy)).subscribe((count) => {
this.count = count;
ɵmarkDirty(this);
});
}
```
Then the app navigate from `AppComponent` to `CounterComponent`,
so there are 2 `markDirty()` call at in a row.
The `1st` call is from `AppComponent` when router changed, the
`2nd` call is from `CounterComponent.ngOnInit()`.
And the `markDirty()->scheduleTick()` code look like this
```
function scheduleTick(rootContext, flags) {
const nothingScheduled = rootContext.flags === 0 /* Empty */;
rootContext.flags |= flags;
if (nothingScheduled && rootContext.clean == _CLEAN_PROMISE) {
rootContext.schedule(() => {
...
if (rootContext.flags & RootContextFlags.DetectChanges)
rootContext.flags &= ~RootContextFlags.DetectChanges;
tickContext();
rootContext.clean = _CLEAN_PROMISE;
...
});
```
So in this case, the `1st` markDirty() will
1. set rootContext.flags = 1
2. before `tickContext()`, reset rootContext.flags = 0
3. inside `tickContext()`, it will call `CounterComponent.ngOnint()`,
so the `2nd` markDirty() is called.
4. and the `2nd` scheduleTick is called, `nothingScheduled` is true,
but rootContext.clean is not `_CLEAN_PROMISE` yet, since the `1st` markDirty tick
is still running.
5. So nowhere will reset the `rootContext.flags`.
6. then in the future, any other `markDirty()` call will not trigger the tick, since
`nothingScheduled` is always false.
So `nothingScheduled` means no tick is scheduled, `rootContext.clean === _CLEAN_PROMISE`
means no tick is running.
So we should set the flags to `rootContext` only when `no tick is scheudled or running`.
PR Close#39316
adds RuntimeError and code enum to improve debugging experience
refactor ExpressionChangedAfterItHasBeenCheckedError to code NG0100
refactor CyclicDependency to code NG0200
refactor No Provider to code NG0201
refactor MultipleComponentsMatch to code NG0300
refactor ExportNotFound to code NG0301
refactor PipeNotFound to code NG0302
refactor BindingNotKnown to code NG0303
refactor NotKnownElement to code NG0304
PR Close#39188
Currently `i18n` attributes are treated the same no matter if they have data bindings or not. This
both generates more code since they have to go through the `ɵɵi18nAttributes` instruction and
prevents the translated attributes from being injected using the `@Attribute` decorator.
These changes makes it so that static translated attributes are treated in the same way as regular
static attributes and all other `i18n` attributes go through the old code path.
Fixes#38231.
PR Close#39408
group together similar error messages as part of error code efforts
ProviderNotFound & NodeInjector grouped into throwProviderNotFoundError
Cyclic dependency errors grouped into throwCyclicDependencyError
PR Close#39251
`TNode.insertBeforeIndex` is only populated when i18n is present. This
change puts all code which reads `insertBeforeIndex` behind a
dynamically loaded functions which are set only when i18n code executes.
PR Close#39301
The `ExpandoInstructions` was unnecessarily convoluted way to solve the
problem of calling the `HostBindingFunction`s on components and
directives. The code was complicated and hard to fallow.
The replacement is a simplified way to achieve the same thing, which
is also more efficient in space and speed.
PR Close#39301
IMPORTANT: `HEADER_OFFSET` should only be refereed to the in the `ɵɵ*` instructions to translate
instruction index into `LView` index. All other indexes should be in the `LView` index space and
there should be no need to refer to `HEADER_OFFSET` anywhere else.
PR Close#39233
- Made `*OpCodes` array branded for safer type checking.
- Simplify `I18NRemoveOpCodes` encoding.
- Broke out `IcuCreateOpCodes` from `I18nMutableOpCodes`.
PR Close#39233
`COMMENT_MARKER` is a generic name which does not make it obvious that
it is used for ICU use case. `ICU_MARKER` is more explicit as it is used
exclusively with ICUs.
PR Close#39233
When looking at `TView` debug template only Element nodes were displayed
as `TNode.Element` was used for both `RElement` and `RText`.
Additionally no text was stored in `TNode.value`. The result was that
the whole template could not be reconstructed. This refactoring creates
`TNodeType.Text` and store the text value in `TNode.value`.
The refactoring also changes `TNodeType` into flag-like structure make
it more efficient to check many different types at once.
PR Close#39233
Before this refactoring/fix the ICU would store the current selected
index in `TView`. This is incorrect, since if ICU is in `ngFor` it will
cause issues in some circumstances. This refactoring properly moves the
state to `LView`.
closes#37021closes#38144closes#38073
PR Close#39233
`TemplateFixture` used to have positional parameters and many tests got
hard to read as number of parameters reach 10+ with many of them `null`.
This refactoring changes `TemplateFixture` to take named parameters
which improves usability and readability in tests.
PR Close#39233
Use the bypass-specific Trusted Types policy for automatically upgrade
any values from custom sanitizers or the bypassSecurityTrust functions
to a Trusted Type. Update tests to reflect the new behavior.
PR Close#39218
Make Angular's HTML sanitizer return a TrustedHTML, as its output is
trusted not to cause XSS vulnerabilities when used in a context where a
browser may parse and evaluate HTML. Also update tests to reflect the
new behaviour.
PR Close#39218
getCheckNoChangesMode was discovered to be unclear as to the purpose of
it. This refactor is a simple renaming to make it much clearer what that
method and property does.
PR Close#39277
This commit updates micro benchmarks to use relative path to Ivy runtime code. Keeping absolute
locations caused issues with build optimizer that retained certain symbols and they appeared in the
output twice.
PR Close#39142
This commit adds micro benchmarks to run micro benchmarks for i18n-related logic in the
following scenarios:
- i18n static attributes
- i18n attributes with interpolations
- i18n blocks of static text
- i18n blocks of text + interpolations
- simple ICUs
- nested ICUs
First 4 scenarios also have baseline scenarios (non-i18n) so that we can compare i18n perf with
non-i18n logic.
PR Close#39142