When debugging `LView`s it is easy to get lost since all of them have
the same name. This change does three things:
1. It makes `TView` have an explicit type:
- `Host`: for the top level `TView` for bootstrap
- `Component`: for the `TView` which represents components template
- `Embedded`: for the `TView` which represents an embedded template
2. It changes the name of `LView` to `LHostView`, `LComponentView`, and
`LEmbeddedView` depending on the `TView` type.
3. For `LComponentView` and `LEmbeddedView` we also append the name of
of the `context` constructor. The result is that we have `LView`s which
are name as: `LComponentView_MyComponent` and `LEmbeddedView_NgIfContext`.
The above changes will make it easier to understand the structure of the
application when debugging.
NOTE: All of these are behind `ngDevMode` and will get removed in
production application.
PR Close#33449
Now that we've replaced `ngBaseDef` with an abstract directive definition, there are a lot more cases where we generate a directive definition without a selector. These changes make it so that we don't generate the `selectors` array if it's going to be empty.
PR Close#33431
`LFrame` stores information specifice to the current `LView` As the code
enters and leaves `LView`s we use `enterView()` and `leaveView()`
respectively to build a a stack of `LFrame`s. This allows us to easily
restore the previous `LView` instruction state.
PR Close#33178
Factory defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngFactoryDef to fac. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngPipeDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33116
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33110
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33088
Currently Ivy stores the element attributes into an array above the component def and passes it into the relevant instructions, however the problem is that upon minification the array will get a unique name which won't compress very well. These changes move the attributes array into the component def and pass in the index into the instructions instead.
Before:
```
const _c0 = ['foo', 'bar'];
SomeComp.ngComponentDef = defineComponent({
template: function() {
element(0, 'div', _c0);
}
});
```
After:
```
SomeComp.ngComponentDef = defineComponent({
consts: [['foo', 'bar']],
template: function() {
element(0, 'div', 0);
}
});
```
A couple of cases that this PR doesn't handle:
* Template references are still in a separate array.
* i18n attributes are still in a separate array.
PR Close#32798
Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).
**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.
This is part of the larger refactor for FW-1468.
PR Close#31953
After a series of recent refactorings `enterView` and `leaveView` became
identical. This PR merges both into one concept of view selectio (similar
to a node selection). This reduces number of concepts and code size.
PR Close#32263
In VE the `Sanitizer` is always available in `BrowserModule` because the VE retrieves it using injection.
In Ivy the injection is optional and we have instructions instead of component definition arrays. The implication of this is that in Ivy the instructions can pull in the sanitizer only when they are working with a property which is known to be unsafe. Because the Injection is optional this works even if no Sanitizer is present. So in Ivy we first use the sanitizer which is pulled in by the instruction, unless one is available through the `Injector` then we use that one instead.
This PR does few things:
1) It makes `Sanitizer` optional in Ivy.
2) It makes `DomSanitizer` tree shakable.
3) It aligns the semantics of Ivy `Sanitizer` with that of the Ivy sanitization rules.
4) It refactors `DomSanitizer` to use same functions as Ivy sanitization for consistency.
PR Close#31934
As part of FW-1265, the `@angular/core` package is made compatible
with the TypeScript `--strict` flag. This already unveiled a few bugs,
so the strictness flag seems to help with increasing the overall code health.
Read more about the strict flag [here](https://www.typescriptlang.org/docs/handbook/compiler-options.html)
PR Close#30993
There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character
So back to the frog eyes we go.
```
__
/ɵɵ\
( -- ) - I am ineffable. I am forever.
_/ \_
/ \ / \
== == ==
```
PR Close#30546
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
- moves all publicly exported instructions to their own files
- refactors namespace instructions to set state in `state.ts`
- no longer exports * from `instructions.ts`.
- `instructions.ts` renamed to `shared.ts` (old `shared.ts` contents folded in to `instructions.ts`)
- updates `all.ts` to re-export from public instruction files.
PR Close#29646
Google3 detected circular references here, so splitting up this rather hodge-podge list of functions into slightly better organizational units.
PR Close#28382
Prior to this fix if a root component was instantiated it create host
bindings, but never render them once update mode ran unless one or more
slot-allocated bindings were issued. Since styling in Ivy does not make
use of LView slots, the host bindings function never ran on the root
component.
This fix ensures that the `hostBindings` function does run for a root
component and also renders the schedlued styling instructions when
executed.
Jira Issue: FW-1062
PR Close#28664
Previously, attempting to destroy a view with listeners more than once
throws an error during event listener cleanup. This happens because
`cleanup` field on the `TView` has already been cleared out by the time
the second destruction runs.
The `destroyed` flag on LView was previously being set in the `destroyLView` function,
but this flag was never _checked_ anywhere in the codebase. This commit
moves _setting_ this flag to the `cleanupView` function, just before
destroy hooks are called. This is necessary because the destroy hooks
can contain arbitrary user code, such as (surprise!) attempting to
destroy the view (again). We also add a check to `destroyLView` to skip
already-destroyed views. This prevents the cleanup code path from running twice.
PR Close#28413
This change is a prerequasity for a later change which will turn the
'di' into its own bazel package. In order to do that we have to:
- have `Injector` type be importable by Ivy. This means that we need
to create `Injector` as a pure type in `interface` folder which is
already a bazel package which Ivy can depend on.
- Remove the dependency of `class Injector` on Ivy so that it can be
compiled in isolation. We do that by using `-1` as special value for
`__NG_ELEMENT_ID__` which tells the Ivy `NodeInjector` than
`Injector` is being requested.
PR Close#28066
This update introduces support for global object (window, document, body) listeners, that can be defined via host listeners on Components and Directives.
PR Close#27772
Since Renderer is shared across root and child views, we need to avoid `destroy` method invocation for child views and only invoke is for root view when needed. Prior to this change, the `destroy` function was called whenever child view was destroyed, thus causing errors at runtime.
PR Close#27592
Originally, the ivy_switch mechanism used Bazel genrules to conditionally
compile one TS file or another depending on whether ngc or ngtsc was the
selected compiler. This was done because we wanted to avoid importing
certain modules (and thus pulling them into the build) if Ivy was on or
off. This mechanism had a major drawback: ivy_switch became a bottleneck
in the import graph, as it both imports from many places in the codebase
and is imported by many modules in the codebase. This frequently resulted
in cyclic imports which caused issues both with TS and Closure compilation.
It turns out ngcc needs both code paths in the bundle to perform the switch
during its operation anyway, so import switching was later abandoned. This
means that there's no real reason why the ivy_switch mechanism needed to
operate at the Bazel level, and for the ivy_switch file to be a bottleneck.
This commit removes the Bazel-level ivy_switch mechanism, and introduces
an additional TypeScript transform in ngtsc (and the pass-through tsc
compiler used for testing JIT) to perform the same operation that ngcc
does, and flip the switch during ngtsc compilation. This allows the
ivy_switch file to be removed, and the individual switches to be located
directly next to their consumers in the codebase, greatly mitigating the
circular import issues and making the mechanism much easier to use.
As part of this commit, the tag for marking switched variables was changed
from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which
flips these tags. Most variables were renamed from R3_* to SWITCH_* as well,
since they're referenced mostly in render2 code.
Test strategy: existing test coverage is more than sufficient - if this
didn't work correctly it would break the hello world and todo apps.
PR Close#26550
Previously in Ivy, metadata for directives/components/modules/etc was
carried in .d.ts files inside type information encoded on the
DirectiveDef, ComponentDef, NgModuleDef, etc types of Ivy definition
fields. This works well, but has the side effect of complicating Ivy's
runtime code as these extra generic type parameters had to be specified
as <any> throughout the codebase. *DefInternal types were introduced
previously to mitigate this issue, but that's the wrong way to solve
the problem.
This commit returns *Def types to their original form, with no metadata
attached. Instead, new *DefWithMeta types are introduced that alias the
plain definition types and add extra generic parameters. This way the
only code that needs to deal with the extra metadata parameters is the
compiler code that reads and writes them - the existence of this metadata
is transparent to the runtime, as it should be.
PR Close#26203