Prior to this change, ComponentFactory.create function invocation in Ivy retained the content of the host element (in case host element reference or CSS seelctor is provided as an argument). This behavior is different in View Engine, where the content of the host element was cleared, except for the case when ShadowDom encapsulation is used (to make sure native slot projection works). This commit aligns Ivy and View Engine and makes sure the host element is cleared before component content insertion.
PR Close#33487
Chains multiple listener instructions on a particular element into a single call which results in less generated code. Also handles listeners on templates, host listeners and synthetic host listeners.
PR Close#33720
Prior to this change, namespaced elements such as SVG elements would not
participate correctly in directive matching as their namespace was not
ignored, which was the case with the View Engine compiler. This led to
incorrect behavior at runtime and template type checking.
This commit resolved the issue by ignoring the namespace of elements and
attributes like they were in View Engine.
Fixes#32061
PR Close#33555
Previously the compiler would ignore everything in the attribute
name after the first dot. For example
<div [attr.someAttr.attrSuffix]="var"></div>
is turned into <div someAttr="varValue"></div>.
This commit ensures that whole attribute name is captured.
Now <div [attr.someAttr.attrSuffix]="var"></div>
is turned into <div someAttr.attrSuffix="varValue"></div>
PR Close#32256
When compiling an Angular decorator (e.g. Directive), @angular/compiler
generates an 'expression' to be added as a static definition field
on the class, a 'type' which will be added for that field to the .d.ts
file, and a statement adjacent to the class that calls `setClassMetadata()`.
Previously, the same WrappedNodeExpr of the class' ts.Identifier was used
within each of this situations.
In the ngtsc case, this is proper. In the ngcc case, if the class being
compiled is within an ES5 IIFE, the outer name of the class may have
changed. Thus, the class has both an inner and outer name. The outer name
should continue to be used elsewhere in the compiler and in 'type'.
The 'expression' will live within the IIFE, the `internalType` should be used.
The adjacent statement will also live within the IIFE, the `adjacentType` should be used.
This commit introduces `ReflectionHost.getInternalNameOfClass()` and
`ReflectionHost.getAdjacentNameOfClass()`, which the compiler can use to
query for the correct name to use.
PR Close#33533
This commit moves nested i18n section detection to an earlier stage where we convert HTML AST to Ivy AST. This also gives a chance to produce better diagnistic message for nested i18n sections, that also includes a file name and location.
PR Close#33583
Previously the compiler would crash if a pipe was encountered which did not
match any pipe in the scope of a template.
This commit introduces a new diagnostic error for unknown pipes instead.
PR Close#33454
Previously the template binder would crash when encountering an unknown
localref (# reference) such as `<div #ref="foo">` when no directive has
`exportAs: "foo"`.
With this commit, the compiler instead generates a template diagnostic error
informing the user about the invalid reference.
PR Close#33454
Now that we've replaced `ngBaseDef` with an abstract directive definition, there are a lot more cases where we generate a directive definition without a selector. These changes make it so that we don't generate the `selectors` array if it's going to be empty.
PR Close#33431
The parser was accidentally reading the `target` tag
below the `alt-trans` target and overriding the correct
`target` tag.
(This already worked in `$localize` but a test has been
added to confirm.)
Fixes#33161
PR Close#33450
Removes `ngBaseDef` from the compiler and any runtime code that was still referring to it. In the cases where we'd previously generate a base def we now generate a definition for an abstract directive.
PR Close#33264
For abstract directives, i.e. directives without a selector, it may
happen that their constructor is called explicitly from a subclass,
hence its parameters are not required to be valid for Angular's DI
purposes. Prior to this commit however, having an abstract directive
with a constructor that has parameters that are not eligible for
Angular's DI would produce a compilation error.
A similar scenario may occur for `@Injectable`s, where an explicit
`use*` definition allows for the constructor to be irrelevant. For
example, the situation where `useFactory` is specified allows for the
constructor to be called explicitly with any value, so its constructor
parameters are not required to be valid. For `@Injectable`s this is
handled by generating a DI factory function that throws.
This commit implements the same solution for abstract directives, such
that a compilation error is avoided while still producing an error at
runtime if the type is instantiated implicitly by Angular's DI
mechanism.
Fixes#32981
PR Close#32987
In Angular View Engine, there are two kinds of decorator inheritance:
1) both the parent and child classes have decorators
This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).
2) only the parent class has a decorator
If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.
This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.
Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.
PR Close#33362
This commit adds CopyDefinitionFeature, which supports the case where an
entire decorator (@Component or @Directive) is inherited from parent to
child.
The existing inheritance feature, InheritDefinitionFeature, supports merging
of parent and child definitions when both were originally present. This
merges things like inputs, outputs, host bindings, etc.
CopyDefinitionFeature, on the other hand, compensates for a definition that
was missing entirely on the child class, by copying fields that aren't
ordinarily inherited (like the template function itself).
This feature is intended to only be used as part of ngcc code generation.
PR Close#33362
This patch ensures that the `[style]` and `[class]` based bindings
are directly applied to an element's style and className attributes.
This patch optimizes the algorithm so that it...
- Doesn't construct an update an instance of `StylingMapArray` for
`[style]` and `[class]` bindings
- Doesn't apply `[style]` and `[class]` based entries using
`classList` and `style` (direct attributes are used instead)
- Doesn't split or iterate over all string-based tokens in a
string value obtained from a `[class]` binding.
This patch speeds up the following cases:
- `<div [class]>` and `<div class="..." [class]>`
- `<div [style]>` and `<div style="..." [style]>`
The overall speec increase is by over 5x.
PR Close#33336
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.
Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.
This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.
Fixes#30080
PR Close#33131
Previously, we had tested that expressions parsed in a Render3 AST
had correctly-defined absolute spans (spans relative to the entire
template, not the local expression). Sometimes we use Template ASTs
rather than Render3 ASTs, and it's desirable to test for correct
expression spans in the template parser as well.
Adding these tests resolved one bug, similar to the one fixed in
fd4fed14d8, where expressions in the value
of a template attribute were not given an absolute span corresponding to
the start of the attribute name rather than the start of the attribute
value.
The diff on this commit is large, partially because it involves some
structural changes of the template parser testing layout. In particular,
the following is done:
1. Move `createMeta*`-like functions from `template_parser_spec.ts` to
be exported from a new test utility file.
2. Create an `ExpressionSourceHumanizer`, similar to the one created in
b04488d692, to allow convenient testing
of expressions' locations.
3. Create `template_parser_absolute_span_spec.ts`, testing the spans of
expressions parsed by the template parser. This is very similar to
the `r3_ast_absolute_span_spec`.
PR Close#33253
Libraries can expose directive/component base classes that will be
used by consumer applications. Using such a base class from another
compilation unit works fine with "ngtsc", but when using "ngc", the
compiler will thrown an error saying that the base class is not
part of a NgModule. e.g.
```
Cannot determine the module for class X in Y! Add X to the NgModule to fix it.
```
This seems to be because the logic for distinguishing directives from
abstract directives is scoped to the current compilation unit within
ngc. This causes abstract directives from other compilation units to
be considered as actual directives (causing the exception).
PR Close#33347
Prior to this commit, we always invoked second i18n pass (in case whitespace removal is on, which is a default), even if a given template doesn't contain i18n information. Now we store a flag (that indicates presence of i18n information in a template) during first i18n pass and use it to check whether second pass is needed.
PR Close#33284
When computing i18n messages for templates there are two passes.
This is because messages must be computed before any whitespace
is removed. Then on a second pass, the messages must be recreated
but reusing the message ids from the first pass.
Previously ICUs were losing their legacy ids that had been computed
via the first pass. This commit fixes that by keeping track of the
message from the first pass (`previousMessage`) for ICU placeholder
nodes.
// FW-1637
PR Close#33318
Previously the parameter was `id` which is ambigous because it
could be a computed value rather than a developer specified custom
value.
PR Close#33318
This commit cleans up the I18MetaVisitor code by moving all the
state of the visitor into a `context` object that gets passed along
as the nodes are being visited. This is in keeping with how visitors
are designed but also makes it easy to remove the
[definite assignment assertions](https://mariusschulz.com/blog/strict-property-initialization-in-typescript#solution-4-definite-assignment-assertion)
from the class properties.
Also, a `I18nMessageFactory` named type is exported to make it
clearer to consumers of the `createI18nMessageFactory()` function.
PR Close#33318
This is a potential fix for https://github.com/angular/vscode-ng-language-service/issues/235
suggested by @andrius-pra in
47696136e3.
Currently, CRLF line endings are converted to LFs and this causes the
diagnostics span to be off in templates that use CRLF. The line endings
must be preserved in order to maintain correct span offset. The solution
is to add an option to the Tokenizer to indicate such preservation.
PR Close#33241
Prior to this commit, the absolute spans (relative to template source
file rather than the start of an expression) of expressions in a
template attribute like `*ngIf` were generated incorrectly, equating to
the relative spans.
This fixes the bug by passing an `absoluteOffset` parameter when parsing
template bindings.
Through some levels of indirection, this is required for the Language
Service to support text replacement in
https://github.com/angular/angular/pull/33091.
PR Close#33189
Prior to this commit, metadata defined on ICU container element was not inherited by the ICU if the whole message is a single ICU (for example: `<ng-container i18n="meaning|description@@id">{count, select, ...}</ng-container>). This commit updates the logic to use parent container i18n meta information for the cases when a message consists of a single ICU.
Fixes#33171
PR Close#33191
Prior to this commit, all `className` inputs were not set because the runtime code assumed that the `classMap` instruction is only generated for `[class]` bindings. However the `[className]` binding also produces the same `classMap`, thus the code needs to distinguish between `class` and `className`. This commit adds extra logic to select the right input name and also throws an error in case `[class]` and `[className]` bindings are used on the same element simultaneously.
PR Close#33188
Injectable defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngInjectableDef to "prov" (for "provider", since injector defs
are known as "inj"). This is because property names cannot
be minified by Uglify without turning on property mangling
(which most apps have turned off) and are thus size-sensitive.
PR Close#33151
Injector defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngInjectorDef to inj. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33151
The `legacyMessageIdFormat` is taken from the `i18nInFormat` property but we were only considering
`xmb`, `xlf` and `xlf2` values.
The CLI also supports `xliff` and `xliff2` values for the
`i18nInFormat`.
This commit adds support for those aliases.
PR Close#33160
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33142
Pipe defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngPipeDef to pipe. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33142
Factory defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngFactoryDef to fac. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngPipeDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33116
Currently, the spans of expressions are recorded only relative to the
template node that they reside in, not their source file.
Introduce a `sourceSpan` property on expression ASTs that records the
location of an expression relative to the entire source code file that
it is in. This may allow for reducing duplication of effort in
ngtsc/typecheck/src/diagnostics later on as well.
Child of #31898
PR Close#31897
BREAKING CHANGE:
We no longer directly have a direct depedency on `tslib`. Instead it is now listed a `peerDependency`.
Users not using the CLI will need to manually install `tslib` via;
```
yarn add tslib
```
or
```
npm install tslib --save
```
PR Close#32167
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33110
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33088
For v9 we want the migration to the new i18n to be as
simple as possible.
Previously the developer had to positively choose to use
legacy messsage id support in the case that their translation
files had not been migrated to the new format by setting the
`legacyMessageIdFormat` option in tsconfig.json to the format
of their translation files.
Now this setting has been changed to `enableI18nLegacyMessageFormat`
as is a boolean that defaults to `true`. The format is then read from
the `i18nInFormat` option, which was previously used to trigger translations
in the pre-ivy angular compiler.
PR Close#33053
This commit implements a tool that will inline translations and generate
a translated copy of a set of application files from a set of translation
files.
PR Close#32881
Currently Ivy stores the element attributes into an array above the component def and passes it into the relevant instructions, however the problem is that upon minification the array will get a unique name which won't compress very well. These changes move the attributes array into the component def and pass in the index into the instructions instead.
Before:
```
const _c0 = ['foo', 'bar'];
SomeComp.ngComponentDef = defineComponent({
template: function() {
element(0, 'div', _c0);
}
});
```
After:
```
SomeComp.ngComponentDef = defineComponent({
consts: [['foo', 'bar']],
template: function() {
element(0, 'div', 0);
}
});
```
A couple of cases that this PR doesn't handle:
* Template references are still in a separate array.
* i18n attributes are still in a separate array.
PR Close#32798
Re-enables the dynamic queries migration, now that we have all of the necessary framework changes in place.
Also moves the logic that identifies static queries out of the compiler and into the static queries migration, because that's the only place left that's using it.
PR Close#32992
The creation of StaticReflector in createMetadataResolver() is a very expensive operation because it involves numerous module resolutions.
To make matter worse, since the API of the Reflector does not provide the ability to invalidate its internal caches, it has to be destroyed and recreated on *every* program change.
This has a HUGE impact on performance.
This PR fixes this problem by carefully invalidating all StaticSymbols in a file that has changed, thereby reducing the overhead of recomputation on program change.
PR Close#32543
This is a re-submit of #32686.
Switches back to having the static flag be optional on ViewChild and ContentChild queries, in preparation for changing its default value.
PR Close#32986
These changes switch to defaulting the `static` flag on `ViewChild` and `ContentChild` queries to `false`, in addition to removing the logic that statically determines whether a query is dynamic.
PR Close#32720
The `$localize` library uses a new message digest function for
computing message ids. This means that translations in legacy
translation files will no longer match the message ids in the code
and so will not be translated.
This commit adds the ability to specify the format of your legacy
translation files, so that the appropriate message id can be rendered
in the `$localize` tagged strings. This results in larger code size
and requires that all translations are in the legacy format.
Going forward the developer should migrate their translation files
to use the new message id format.
PR Close#32937
In an attempt to be compatible with previous translation files
the Angular compiler was generating instructions that always
included the message id. This was because it was not possible
to accurately re-generate the id from the calls to `$localize()` alone.
In line with https://hackmd.io/EQF4_-atSXK4XWg8eAha2g this
commit changes the compiler so that it only renders ids if they are
"custom" ones provided by the template author.
NOTE:
When translating messages generated by the Angular compiler
from i18n tags in templates, the `$localize.translate()` function
will compute message ids, if no custom id is provided, using a
common digest function that only relies upon the information
available in the `$localize()` calls.
This computed message id will not be the same as the message
ids stored in legacy translation files. Such files will need to be
migrated to use the new common digest function.
This only affects developers who have been trialling `$localize`, have
been calling `loadTranslations()`, and are not exclusively using custom
ids in their templates.
PR Close#32867
Metadata blocks are delimited by colons. Previously the code naively just
looked for the next colon in the string as the end marker.
This commit supports escaping colons within the metadata content.
The Angular compiler has been updated to add escaping as required.
PR Close#32867
Previously the metadata and placeholder blocks were serialized in
a variety of places. Moreover the code for creating the `LocalizedString`
AST node was doing serialization, which break the separation of concerns.
Now this is all done by the code that renders the AST and is refactored into
helper functions to avoid repeating the behaviour.
PR Close#32867
With #31953 we moved the factories for components, directives and pipes into a new field called `ngFactoryDef`, however I decided not to do it for injectables, because they needed some extra logic. These changes set up the `ngFactoryDef` for injectables as well.
For reference, the extra logic mentioned above is that for injectables we have two code paths:
1. For injectables that don't configure how they should be instantiated, we create a `factory` that proxies to `ngFactoryDef`:
```
// Source
@Injectable()
class Service {}
// Output
class Service {
static ngInjectableDef = defineInjectable({
factory: () => Service.ngFactoryFn(),
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
2. For injectables that do configure how they're created, we keep the `ngFactoryDef` and generate the factory based on the metadata:
```
// Source
@Injectable({
useValue: DEFAULT_IMPL,
})
class Service {}
// Output
export class Service {
static ngInjectableDef = defineInjectable({
factory: () => DEFAULT_IMPL,
});
static ngFactoryFn: (t) => new (t || Service)();
}
```
PR Close#32433
Switches back to having the `static` flag be optional on `ViewChild` and `ContentChild` queries, in preparation for changing its default value.
PR Close#32686
These changes switch to defaulting the `static` flag on `ViewChild` and `ContentChild` queries to `false`, in addition to removing the logic that statically determines whether a query is dynamic.
PR Close#32720
Prior to this commit, the `ngProjectAs` attribute was only included with a special flag and in a parsed format. As a result, projected node was missing `ngProjectAs` attribute as well as other attributes added after `ngProjectAs` one. This is problematic since app code might rely on the presence of `ngProjectAs` attribute (for example in CSS). This commit fixes the problem by including `ngProjectAs` into attributes array as a regular attribute and also makes sure that the parsed version of the `ngProjectAs` attribute with a special marker is added after regular attributes (thus we set them correctly at runtime). This change also aligns View Engine and Ivy behavior.
PR Close#32784
Now that the `$localize` translations are `MessageId` based the
compiler must render `MessageId`s in its generated `$localize` code.
This is because the `MessageId` used by the compiler is computed
from information that does not get passed through to the `$localize`
tagged string.
For example, the generated code for the following template
```html
<div id="static" i18n-title="m|d" title="introduction"></div>
```
will contain these localization statements
```ts
if (ngI18nClosureMode) {
/**
* @desc d
* @meaning m
*/
const MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1 = goog.getMsg("introduction");
I18N_1 = MSG_EXTERNAL_8809028065680254561$$APP_SPEC_TS_1;
}
else {
I18N_1 = $localize \`:m|d@@8809028065680254561:introduction\`;
}
```
Since `$localize` is not able to accurately regenerate the source-message
(and so the `MessageId`) from the generated code, it must rely upon the
`MessageId` being provided explicitly in the generated code.
The compiler now prepends all localized messages with a "metadata block"
containing the id (and the meaning and description if defined).
Note that this metadata block will also allow translation file extraction
from the compiled code - rather than relying on the legacy ViewEngine
extraction code. (This will be implemented post-v9).
Although these metadata blocks add to the initial code size, compile-time
inlining will completely remove these strings and so will not impact on
production bundle size.
PR Close#32594
As discussed in https://hackmd.io/33M5Wb-JT7-0fneA0JuHPA `SourceMessage`
strings are not sufficient for matching translations.
This commit updates `@angular/localize` to use `MessageId`s for translation
matching instead.
Also the run-time translation will now log a warning to the console if a
translation is missing.
BREAKING CHANGE:
Translations (loaded via the `loadTranslations()` function) must now use
`MessageId` for the translation key rather than the previous `SourceMessage`
string.
PR Close#32594
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
PR Close#32591
If an <ng-template> contains a structural directive (for example *ngIf), Ngtsc generates extra template function with 1 template instruction call. When <ng-template> tag also contains i18n attribute on it, we generate i18nStart and i18nEnd instructions around it, which is unnecessary and breaking runtime. This commit adds a logic to make sure we do not generate i18n instructions in case only `template` is present.
PR Close#32623
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
PR Close#32596
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
Replaces the `select` instruction with a new one called `advance`. Instead of the jumping to a specific index, the new instruction goes forward X amount of elements. The advantage of doing this is that it should generate code the compresses better.
PR Close#32516
The `goog.getMsg()` function requires placeholder names to be camelCased.
This is not the case for `$localize`. Here placeholder names need
match what is serialized to translation files.
Specifically such placeholder names keep their casing but have all characters
that are not in `a-z`, `A-Z`, `0-9` and `_` converted to `_`.
PR Close#32509
Prior to this commit, complex expressions (that require additional statements to be generated) were handled incorrectly in case they were used in attributes annotated with i18n flags. The problem was caused by the fact that extra statements were not appended to the temporary vars block, so they were missing in generated code. This commit updated the logic to use the `convertPropertyBinding`, which contains the necessary code to append extra statements. The `convertExpressionBinding` function was removed as it duplicates the `convertPropertyBinding` one (for the most part) and is no longer used.
PR Close#32309
Previously the template compiler would generate the same jsdoc comment
block for `$localize` as for `goog.getMsg()`. But it turns out that
the closure compiler will complain if the `@desc` and `@meaning`
tags are used for non-`getMsg()` calls.
For now we do not generate the comments for `$localize` calls. They are
not being used at the moment.
In the future it would be good to be able to extract the descriptions and
meanings from the `$localize` calls rather than relying upon the `getMsg()`
calls, which we do now. So we need to find a workaround for this constraint.
PR Close#32473
This commit changes the Angular compiler (ivy-only) to generate `$localize`
tagged strings for component templates that use `i18n` attributes.
BREAKING CHANGE
Since `$localize` is a global function, it must be included in any applications
that use i18n. This is achieved by importing the `@angular/localize` package
into an appropriate bundle, where it will be executed before the renderer
needs to call `$localize`. For CLI based projects, this is best done in
the `polyfills.ts` file.
```ts
import '@angular/localize';
```
For non-CLI applications this could be added as a script to the index.html
file or another suitable script file.
PR Close#31609
Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).
**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.
This is part of the larger refactor for FW-1468.
PR Close#31953
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.
With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.
PR Close#32171
This option makes ngc behave as tsc, and was originally implemented before
ngtsc existed. It was designed so we could build JIT-only versions of
Angular packages to begin testing Ivy early, and is not used at all in our
current setup.
PR Close#32219
In Angular today, the following pattern works:
```typescript
export class BaseDir {
constructor(@Inject(ViewContainerRef) protected vcr: ViewContainerRef) {}
}
@Directive({
selector: '[child]',
})
export class ChildDir extends BaseDir {
// constructor inherited from BaseDir
}
```
A decorated child class can inherit a constructor from an undecorated base
class, so long as the base class has metadata of its own (for JIT mode).
This pattern works regardless of metadata in AOT.
In Angular Ivy, this pattern does not work: without the @Directive
annotation identifying the base class as a directive, information about its
constructor parameters will not be captured by the Ivy compiler. This is a
result of Ivy's locality principle, which is the basis behind a number of
compilation optimizations.
As a solution, @Directive() without a selector will be interpreted as a
"directive base class" annotation. Such a directive cannot be declared in an
NgModule, but can be inherited from. To implement this, a few changes are
made to the ngc compiler:
* the error for a selector-less directive is now generated when an NgModule
declaring it is processed, not when the directive itself is processed.
* selector-less directives are not tracked along with other directives in
the compiler, preventing other errors (like their absence in an NgModule)
from being generated from them.
PR Close#31379
Similar to interpolation, we do not want to completely remove whitespace
nodes that are siblings of an expansion.
For example, the following template
```html
<div>
<strong>items left<strong> {count, plural, =1 {item} other {items}}
</div>
```
was being collapsed to
```html
<div><strong>items left<strong>{count, plural, =1 {item} other {items}}</div>
```
which results in the text looking like
```
items left4
```
instead it should be collapsed to
```html
<div><strong>items left<strong> {count, plural, =1 {item} other {items}}</div>
```
which results in the text looking like
```
items left 4
```
---
**Analysis of the code and manual testing has shown that this does not cause
the generated ids to change, so there is no breaking change here.**
PR Close#31962
In Angular today, the following pattern works:
```typescript
export class BaseDir {
constructor(@Inject(ViewContainerRef) protected vcr: ViewContainerRef) {}
}
@Directive({
selector: '[child]',
})
export class ChildDir extends BaseDir {
// constructor inherited from BaseDir
}
```
A decorated child class can inherit a constructor from an undecorated base
class, so long as the base class has metadata of its own (for JIT mode).
This pattern works regardless of metadata in AOT.
In Angular Ivy, this pattern does not work: without the @Directive
annotation identifying the base class as a directive, information about its
constructor parameters will not be captured by the Ivy compiler. This is a
result of Ivy's locality principle, which is the basis behind a number of
compilation optimizations.
As a solution, @Directive() without a selector will be interpreted as a
"directive base class" annotation. Such a directive cannot be declared in an
NgModule, but can be inherited from. To implement this, a few changes are
made to the ngc compiler:
* the error for a selector-less directive is now generated when an NgModule
declaring it is processed, not when the directive itself is processed.
* selector-less directives are not tracked along with other directives in
the compiler, preventing other errors (like their absence in an NgModule)
from being generated from them.
PR Close#31379
Template AST nodes for (bound) attributes, variables and references will
now retain a reference to the source span of their value, which allows
for more accurate type check diagnostics.
PR Close#30181
Currently we always generate the `read` parameter for the view and content query instructions, however since most of the time the `read` parameter won't be set, we'll end up generating `null` which adds 5 bytes for each query when minified. These changes make it so that the `read` parameter only gets generated if it has a value.
PR Close#31667
This commit updates the `_clone` function of the `_ApplySourceSpanTransformer` class, where the for-in loop was used, resulting in copying from prototype to own properties, thus consuming more memory. Prior to NodeJS 12 (V8 versions before 7.4) there was an optimization that was improving the situation and since that logic was removed in favor of other optimizations, the situation with memory consumption caused by the for-in loop got worse. This commit adds a check to make sure we copy only own properties over to cloned object.
Closes#31627.
PR Close#31638
When injecting a `ChangeDetectorRef` into a pipe, the expected result is that the ref will be tied to the component in which the pipe is being used. This works for most cases, however when a pipe is used inside a property binding of a component (see test case as an example), the current `TNode` is pointing to component's host so we end up injecting the inner component's view. These changes fix the issue by only looking up the component view of the `TNode` if the `TNode` is a parent.
This PR resolves FW-1419.
PR Close#31438
Currently, template expressions and statements have their location
recorded relative to the HTML element they are in, with no handle to
absolute location in a source file except for a line/column location.
However, the line/column location is also not entirely accurate, as it
points an entire semantic expression, and not necessarily the start of
an expression recorded by the expression parser.
To support record of the source code expressions originate from, add a
new `sourceSpan` field to `ASTWithSource` that records the absolute byte
offset of an expression within a source code.
Implement part 2 of [refactoring template parsing for
stability](https://hackmd.io/@X3ECPVy-RCuVfba-pnvIpw/BkDUxaW84/%2FMA1oxh6jRXqSmZBcLfYdyw?type=book).
PR Close#31391
This commit is the final patch of the ivy styling algorithm refactor.
This patch swaps functionality from the old styling mechanism to the
new refactored code by changing the instruction code the compiler
generates and by pointing the runtime instruction code to the new
styling algorithm.
PR Close#30742
Fixes all TypeScript failures caused by enabling the `--strict`
flag for test source files. We also want to enable the strict
options for tests as the strictness enforcement improves the
overall codehealth, unveiled common issues and additionally it
allows us to enable `strict` in the `tsconfig.json` that is picked
up by IDE's.
PR Close#30993
As part of FW-1265, the `@angular/compiler` package is made compatible
with the TypeScript `--strict` flag. This already unveiled a few bugs,
so the strictness flag seems to help with increasing the overall code health.
Read more about the strict flag [here](https://www.typescriptlang.org/docs/handbook/compiler-options.html)
PR Close#30993
Fixes Ivy matching directives against attribute bindings (e.g. `[attr.some-directive]="foo"`). Works by excluding attribute bindings from the attributes array during compilation. This has the added benefit of generating less code.
**Note:** My initial approach to implementing this was to have a different marker for attribute bindings so that they can be ignored when matching directives, however as I was implementing it I realized that the attributes in that array were only used for directive matching (as far as I could tell). I decided to drop the attribute bindings completely, because it results in less generated code.
PR Close#31541
Currently we reuse the same instruction both for regular property bindings and property bindings on the `host`. The only difference between the two is that when it's on the host we shouldn't support inputs. We have an optional parameter called `nativeOnly` which is used to differentiate the two, however since `nativeOnly` is preceeded by another optional parameter (`sanitizer`), we have to generate two extra parameters for each host property bindings every time (e.g. `property('someProp', 'someValue', null, true)`).
These changes add a new instruction called `hostProperty` which avoids the need for the two parameters by removing `nativeOnly` which is always set and it allows us to omit `sanitizer` when it isn't being used.
These changes also remove the `nativeOnly` parameter from the `updateSyntheticHostBinding` instruction, because it's only generated for host elements which means that we can assume that its value will always be `true`.
PR Close#31550
Prior to this fix, the logic to set the right placeholder format for ICUs was a bit incorrect: if there was a nested ICU in one of the root ICU cases, that led to a problem where placeholders in subsequent branches used the wrong ({$placeholder}) format instead of {PLACEHOLDER} one. This commit updates the logic to make sure we properly transform all placeholders even if nested ICUs are present.
PR Close#31516
Since `goog.getMsg` does not process ICUs (post-processing is required via goog.i18n.MessageFormat, https://google.github.io/closure-library/api/goog.i18n.MessageFormat.html) and placeholder format used for ICUs and regular messages inside `goog.getMsg` are different, the current implementation (that assumed the same placeholder format) needs to be updated. This commit updates placeholder format used inside ICUs from `{$placeholder}` to `{PLACEHOLDER}` to better align with Closure. ICU placeholders (that were left as is prior to this commit) are now replaced with actual values in post-processing step (inside `i18nPostprocess`).
PR Close#31459
Adds a new `elementContainer` instruction that can be used to avoid two instruction (`elementContainerStart` and `elementContainerEnd`) for `ng-container` that has text-only content. This is particularly useful when we have `ng-container` inside i18n sections.
This PR resolves FW-1105.
PR Close#31444
Adds the new `classMapInterpolate1` through `classMapInterpolate8` instructions which handle interpolations inside the `class` attribute and moves the interpolation logic internally. This allows us to remove the `interpolationX` instructions in a follow-up PR.
These changes also add an error if an interpolation is encountered inside a `style` tag (e.g. `style="width: {{value}}"`). Up until now this would actually generate valid instructions, because `styleMap` goes through the same code path as `classMap` which does support interpolation. At runtime, however, `styleMap` would set invalid styles that look like `<div style="0:w;1:i;2:d;3:t;4:h;5::;7:1;">`. In `ViewEngine` interpolations inside `style` weren't supported either, however there we'd output invalid styles like `<div style="unsafe">`, even if the content was trusted.
PR Close#31211
There's no build time dependency from @angular/core to @angular/compiler,
so core can't directly refer to compiler types. To overcome this limitation,
there's a facade layer defined in the compiler and duplicated in core,
such that during runtime all types will correctly align.
There's a testcase in the compiler that verifies that all such facade types
are compatible across core and compiler, such that the core types can't get
misaligned with the actual definitions in the compiler. This suite of
tests were missing the `R3BaseMetadataFacade` facade type, so it was possible
for this type to get out of sync.
PR Close#31210
When a class uses Angular decorators such as `@Input`, `@Output` and
friends without an Angular class decorator, they are compiled into a
static `ngBaseDef` field on the class, with the TypeScript declaration
of the class being altered to declare the `ngBaseDef` field to be of type
`ɵɵBaseDef`. This type however requires a generic type parameter that
corresponds with the type of the class, however the compiler did not
provide this type parameter. As a result, compiling a program where such
invalid `ngBaseDef` declarations are present will result in compilation
errors.
This commit fixes the problem by providing the generic type parameter.
Fixes#31160
PR Close#31210
Adds chaining to the `property`, `attribute` and `updateSyntheticHostBinding` instructions when they're used in a host binding.
This PR resolves FW-1404.
PR Close#31296
These files have not been formatted properly, due to issues in the
`gulp format*` tasks. See previous commits (or #31295) for more details.
PR Close#31295
Add an IndexingContext class to store indexing information and a
transformer module to generate indexing analysis. Integrate the indexing
module with the rest of NgtscProgram and add integration tests.
Closes#30959
PR Close#31151
Change the Element constructor in r3_ast to create a new ParseSourceSpan when regenerating it rather than extending an object, which does not contain the overloaded toString().
PR Close#31190
The function `bind` has been internalized wherever it was needed, this PR makes sure that it is no longer publicly exported.
FW-1385 #resolve
PR Close#31131
This commit fixes a couple of issues with TS 3.5 compatibility in order to
unblock migration of g3. Mostly 'any's are added, and there are no behavior
changes.
PR Close#31174
Move the definition leadingTriviaChars included in parsing a template
to the parameters of parseTemplate. This allows overriding of the
default leadingTriviaChars, which is needed by some pipelines like the
indexing pipeline because leadingTriviaChars may throw off the recorded
span of selectors.
PR Close#31136
Currently the `RecursiveAstVisitor` that is part of the template expression
parser does not _always_ properly pass through the context that can be
specified when visting a given expression. Only a handful of AST types
pass through the context while others are accidentally left out. This causes
unexpected and inconsistent behavior and basically makes the `context`
parameter not usable if the type of template expression is not known.
e.g. the template variable assignment migration currently depends on
the `RecursiveAstVisitor` but sometimes breaks if developers use
things like conditionals in their template variable assignments.
Fixes#31043
PR Close#31085
A temporary check is in place to determine whether a key in an object
literal needs to be quoted during emit. Previously, only the presence of
a dash caused a key to become quoted, this however is not sufficient for
@angular/flex-layout to compile properly as it has dots in its inputs.
This commit extends the check to also use quotes when a dot is present.
Fixes#30114
PR Close#31146
Currently each property binding generates an instruction like this:
```
property('prop1', ctx.value1);
property('prop2', ctx.value2);
```
The problem is that we're repeating the call to `property` for each of the properties. Since the `property` instruction returns itself, we can chain all of the calls which is more compact and it looks like this:
```
property('prop1', ctx.value1)('prop2', ctx.value2);
```
These changes implement the chaining behavior for regular property bindings and for synthetic ones, however interpolated ones are still handled like before, because they use a separate instruction.
This PR resolves FW-1389.
PR Close#31078
i18nExp now uses `bind` internally rather than having the compiler generate it in order to bring it in line with other functions like `textBinding` & `property`.
FW-1384 #resolve
PR Close#31089
- Splits core functionality off into a shared internal function
- ɵɵtextBinding will no longer require an index
- Alters the compiler to stop generating an index argument for the instruction
- Updates tests
- Updates some usage of ɵɵtextBinding in i18n to use the helper function instead
PR Close#30792
To provide some context: The implicit receiver is part of the
parsed Angular template AST. Any property reads in bindings,
interpolations etc. read from a given object (usually the component
instance). In that case there is an _implicit_ receiver which can also
be specified explicitly by just using `this`.
e.g.
```html
<ng-template>{{this.myProperty}}</ng-template>
```
This works as expected in Ivy and View Engine, but breaks in case the
implicit receiver is not used for property reads. For example:
```html
<my-dir [myFn]="greetFn.bind(this)"></my-dir>
```
In that case the `this` will not be properly translated into the generated
template function code because the Ivy compiler currently always treats
the `ctx` variable as the implicit receiver. This is **not correct** and breaks
compatibility with View Engine. Rather we need to ensure that we retrieve
the root context for the standalone implicit receiver similar to how it works
for property reads (as seen in the example above with `this.myProperty`)
Note that this requires some small changes to the `expression_converter`
because we only want to generate the `eenextContent()` instruction if the
implicit receiver is _actually_ used/needed. View Engine determines if that is the case by recursively walking through the converted output AST and
checking for usages of the `o.variable('_co')` variable ([see here][ve_check]). This would work too for Ivy, but involves most likely more code duplication
since templates are isolated in different functions and it another pass
through the output AST for every template expression.
[ve_check]: 0d6c9d36a1/packages/compiler/src/view_compiler/view_compiler.ts (L206-L208)
Resolves FW-1366.
PR Close#30897
- Refactors compiler to stop generating `ɵɵselect(0)` instructions
- Alters template execution to always call the equivalent of `ɵɵselect(0)` before running a template in update mode
- Updates tests to not check for or call `ɵɵselect(0)`.
The goal here is to reduce the size of generated templates
PR Close#30830
Fixes Ivy throwing an error if it runs into an empty property binding on an `ng-template` (e.g. `<ng-template [something]=""></ng-template>`) by not generating an update instruction for it.
Fixes#30801.
This PR resoves FW-1356.
PR Close#30829
- Removes ɵɵelementProperty instruction
- Updates tests that were using it
- NOTE: There is one test under `render3/integration_spec.ts` that is commented out, and needs to be reviewed. Basically, I could not find a good why to test what it was doing, because it was doing things that I am not sure we could generate in an acceptance test.
PR Close#30645
Added a new syntax for projections (`¤` will represent `ng-content` nodes) so that we can treat them specifically.
When we enter an i18n block with the instruction `i18nStart`, a new `delayProjection` variable is set to true to prevent the instruction `projection` from projecting the nodes. Once we reach the `i18nEnd` instruction and encounter a projection in the translation we will project its nodes.
If a projection was removed from a translation, then its nodes won't be projected at all.
The variable `delayProjection` is restored to `false` at the end of `i18nEnd` so that it doesn't stop projections outside of i18n blocks.
FW-1261 #resolve
PR Close#30782
With View engine it was possible to declare multiple projection
definitions and to programmatically project nodes into the slots.
e.g.
```html
<ng-content></ng-content>
<ng-content></ng-content>
```
Using `ViewContainerRef#createComponent` allowed projecting
nodes into one of the projection defs (through index)
This no longer works with Ivy as the `projectionDef` instruction only
retrieves a list of selectors instead of also retrieving entries for
reserved projection slots which appear when using the default
selector multiple times (as seen above).
In order to fix this issue, the Ivy compiler now passes all
projection slots to the `projectionDef` instruction. Meaning that
there can be multiple projection slots with the same wildcard
selector. This allows multi-slot projection as seen in the
example above, and it also allows us to match the multi-slot node
projection order from View Engine (to avoid breaking changes).
It basically ensures that Ivy fully matches the View Engine behavior
except of a very small edge case that has already been discussed
in FW-886 (with the conclusion of working as intended).
Read more here: https://hackmd.io/s/Sy2kQlgTE
PR Close#30561
`i18nAttributes` instructions always occur after the element instruction. This means that we need to treat `i18n-` attributes differently.
By defining a specific `AttributeMarker` we can ensure that we won't trigger directive inputs with untranslated attribute values.
FW-1332 #resolve
PR Close#30402
Changed runtime i18n to define attributes with bindings, or matching directive inputs/outputs as element properties as we are supposed to do in Angular.
This PR fixes the issue where directive inputs wouldn't be trigged.
FW-1315 #resolve
PR Close#30402
The R3TargetBinder "binds" an Angular template AST, computing semantic
information regarding the template and making it accessible.
One of the binding passes previously had a bug, where for the following
template:
<div *ngIf="foo as foo"></div>
which desugars to:
<ng-template ngIf [ngIf]="foo" let-foo="ngIf">
<div></div>
</ng-template>
would have the `[ngIf]` binding processed twice - in both the scope which
contains the `<ng-template>` and the scope inside the template. The bug
arises because during the latter, `foo` is a variable defined by `let-foo`,
and so the R3TargetBinder would incorrectly learn that `foo` inside `[ngIf]`
maps to that variable.
This commit fixes the bug by only processing inputs, outputs, and
templateAttrs from `Template`s in the outer scope.
PR Close#30669
This patch is one of the final patches to refactor the styling algorithm
to be more efficient, performant and less complex.
This patch enables sanitization support for map-based and prop-based
style bindings.
PR Close#30667
This commit makes the static flag on @ViewChild and @ContentChild required.
BREAKING CHANGE:
In Angular version 8, it's required that all @ViewChild and @ContentChild
queries have a 'static' flag specifying whether the query is 'static' or
'dynamic'. The compiler previously sorted queries automatically, but in
8.0 developers are required to explicitly specify which behavior is wanted.
This is a temporary requirement as part of a migration; see
https://angular.io/guide/static-query-migration for more details.
@ViewChildren and @ContentChildren queries are always dynamic, and so are
unaffected.
PR Close#30639
This patch in the second runtime change which refactors how styling
bindings work in Angular. This patch refactors how map-based
`[style]` and `[class]` bindings work using a new algorithm which
is faster and less complex than the former one.
This patch is a follow-up to an earlier refactor which enabled
support for prop-based `[style.name]` and `[class.name]`
bindings (see f03475cac8).
PR Close#30543
Prior to this change we processed binding expression (including bindings with pipes) in i18n attributes before we generate update instruction. As a result, slot offsets for pipeBind instructions were calculated incorrectly. Now we perform binding expression processing when we generate "update block" instructions, so offsets are calculated correctly.
PR Close#30573
There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character
So back to the frog eyes we go.
```
__
/ɵɵ\
( -- ) - I am ineffable. I am forever.
_/ \_
/ \ / \
== == ==
```
PR Close#30546
This is the first refactor PR designed to change how styling bindings
(i.e. `[style]` and `[class]`) behave in Ivy. Instead of having a heavy
element-by-element context be generated for each element, this new
refactor aims to use a single context for each `tNode` element that is
examined and iterated over when styling values are to be applied to the
element.
This patch brings this new functionality to prop-based bindings such as
`[style.prop]` and `[class.name]`.
PR Close#30469
This is a tentative fix for the error `Cannot write file '/node_modules/@angular/core/core.ngfactory.d.ts' because it would overwrite input file.` that is showing in codefresh windows ci.
PR Close#30482
It's unnecessary for a jasmine_node_test rule to depend on a TypeScript library. This dependency is already satisfied via the 'data' and also having it in 'deps' causes CI flakiness on Windows
PR Close#30482
Currently in Ivy `NgModule` registration happens when the class is declared, however this is inconsistent with ViewEngine and requires extra generated code. These changes remove the generated code for `registerModuleFactory`, pass the id through to the `ngModuleDef` and do the module registration inside `NgModuleFactory.create`.
This PR resolves FW-1285.
PR Close#30244
This is the final patch to migrate the Angular styling code to have a
smaller instruction set in preparation for the runtime refactor. All
styling-related instructions now work both in template and hostBindings
functions and do not use `element` as a prefix for their names:
BEFORE:
elementStyling()
elementStyleProp()
elementClassProp()
elementStyleMap()
elementClassMap()
elementStylingApply()
AFTER:
styling()
styleProp()
classProp()
styleMap()
classMap()
stylingApply()
PR Close#30318
This patch removes all host-specific styling instructions in favor of
using element-level instructions instead. Because of the previous
patches that made sure `select(n)` worked between styling calls, all
host level instructions are not needed anymore. This patch changes each
of those instruction calls to use any of the `elementStyling*`,
`elementStyle*` and `elementClass*` styling instructions instead.
PR Close#30336
Fixes not being able to bind a `SafeStyle` as a camel cased style property (e.g. `[style.backgroundImage]="someSafeStyle"`). The issue was due to the fact that we only check the dash case property names to determine whether to sanitize a value.
This PR resolves FW-1279.
PR Close#30328
This patch is one commit of many patches that will unify all styling instructions
across both template-level bindings and host-level bindings. This patch in particular
removes the `elementIndex` param because it is already set prior to each styling
instruction via the `select(n)` instruction.
PR Close#30313
Prior to this patch, the `select(n)` instruction would only be generated
when property bindings are encountered which meant that styling-related
bindings were skipped. This patch ensures that all styling-related bindings
(i.e. class and style bindings) are always prepended with a `select()`
instruction prior to being generated in AOT.
PR Close#30311
This patch breaks up the existing `elementStylingMap` into
`elementClassMap` and `elementStyleMap` instructions. It also breaks
apart `hostStlyingMap` into `hostClassMap` and `hostStyleMap`
instructions. This change allows for better tree-shaking and reduces
the complexity of the styling algorithm code for `[style]` and `[class]`
bindings.
PR Close#30293
This commit fixes a regression introduced in PR 29692 where
the interpolate symbol in View Engine was improperly prefixed
with the ɵɵ that signifies private instructions for Ivy. It
resulted in interpolations of 10+ values not working correctly
in AOT mode. This commit removes the prefix.
PR Close#30243
Fixes `HostBinding` and `HostListener` declarations not being inherited from base classes that don't have an Angular decorator.
This PR resolves FW-1275.
PR Close#30158
- Extracts and documents code that will be common to interpolation instructions
- Ensures that binding indices are updated at the proper time during compilation
- Adds additional tests
Related #30011
PR Close#30129
Leading trivia, such as whitespace or comments, is
confusing for developers looking at source-mapped
templates, since they expect the source-map segment
to start after the trivia.
This commit adds skipping trivial characters to the lexer;
and then implements that in the template parser.
PR Close#30095
Fixes view and content queries not being inherited in Ivy, if the base class hasn't been annotated with an Angular decorator (e.g. `Component` or `Directive`).
Also reworks the way the `ngBaseDef` is created so that it is added at the same point as the queries, rather than inside of the `Input` and `Output` decorators.
This PR partially resolves FW-1275. Support for host bindings will be added in a follow-up, because this PR is somewhat large as it is.
PR Close#30015
Previously, a template's context name would only be included in an embedded
template function if the element that the template was declared on has a
tag name. This is generally true for elements, except for `ng-content`
that does not have a tag name. By omitting the context name the compiler
could introduce duplicate template function names, which would fail at runtime.
This commit fixes the behavior by always including the context name in the
template function's name, regardless of tag name.
Resolves FW-1272
PR Close#30025
Fixes Ivy throwing an error because it tries to generate styling instructions for empty `style` and `class` bindings.
This PR resolves FW-1274.
PR Close#30024
Previously, Template.templateAttrs was introduced to capture attribute
bindings which originated from microsyntax (e.g. bindings in *ngFor="...").
This means that a Template node can have two different structures, depending
on whether it originated from microsyntax or from a literal <ng-template>.
In the literal case, the node behaves much like an Element node, it has
attributes, inputs, and outputs which determine which directives apply.
In the microsyntax case, though, only the templateAttrs should be used
to determine which directives apply.
Previously, both the t2_binder and the TemplateDefinitionBuilder were using
the wrong set of attributes to match directives - combining the attributes,
inputs, outputs, and templateAttrs of the Template node regardless of its
origin. In the TDB's case this wasn't a problem, since the TDB collects a
global Set of directives used in the template, so it didn't matter whether
the directive was also recognized on the <ng-template>. t2_binder's API
distinguishes between directives on specific nodes, though, so it's more
sensitive to mismatching.
In particular, this showed up as an assertion failure in template type-
checking in certain cases, when a directive was accidentally matched on
a microsyntax template element and also had a binding which referenced a
variable declared in the microsyntax. This resulted in the type-checker
attempting to generate a reference to a variable that didn't exist in that
scope.
The fix is to distinguish between the two cases and select the appropriate
set of attributes to match on accordingly.
Testing strategy: tested in the t2_binder tests.
PR Close#29698
Previously the template type-checking engine processed templates in a linear
manner, and could not handle '#' references within a template. One reason
for this is that '#' references are non-linear - a reference can be used
before its declaration. Consider the template:
```html
{{ref.value}}
<input #ref>
```
Accommodating this required refactoring the type-checking code generator to
be able to produce Type Check Block (TCB) code non-linearly. Now, each
template is processed and a list of TCB operations (`TcbOp`s) are created.
Non-linearity is modeled via dependencies between operations, with the
appropriate protection in place for circular dependencies.
Testing strategy: TCB tests included.
PR Close#29698
This commit adds registration of AOT compiled NgModules that have 'id'
properties set in their metadata. Such modules have a call to
registerNgModuleType() emitted as part of compilation.
The JIT behavior of this code is already in place.
This is required for module loading systems (such as g3) which rely on
getModuleFactory().
PR Close#29980
The `@angular/compiler` package currently contains the logic for determining whether
given queries are used statically or dynamically. This logic would be necessary in order
to build a schematic that leverages the Angular compiler API's in order to simulate the
query timing based on what ViewEngine computed at compilation-time/runtime.
Exporting the logic that is necessary to detect the timing should not affect the public
API as the `@angular/compiler` package is denoted as private in `PUBLIC_API.md`
PR Close#29815
Prior to this change, element attributes annotated with i18n- prefix were removed from element attribute list and processed separately by i18n-specific logic. This behavior is causing issues with directive matching, since attributes are not present in the list of attrs for matching purposes. This commit updates i18n logic to retain attributes in the main attribute list, thus allowing directive matching logic to work correctly.
PR Close#29856
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
So far using runtime i18n with ivy meant that you needed to use Closure and `goog.getMsg` (or a polyfill). This PR changes the compiler to output both closure & non-closure code, while the unused option will be tree-shaken by minifiers.
This means that if you use the Angular CLI with ivy and load a translations file, you can use i18n and the application will not throw at runtime.
For now it will not translate your application, but at least you can try ivy without having to remove all of your i18n code and configuration.
PR Close#28689
Currently in Ivy we pass both the raw and parsed selectors to the projectionDef instruction, because the parsed selectors are used to match most nodes, whereas the raw ones are used to match against nodes with the ngProjectAs attribute. The raw selectors add a fair bit of code that won't be used in most cases, because ngProjectAs is somewhat rare.
These changes rework the compiler not to output the raw selectors in the projectionDef, but to parse the selector in ngProjectAs and to store it on the TAttributes. The logic for matching has also been changed so that it matches the pre-parsed ngProjectAs selector against the list of projection selectors.
PR Close#29578
The defineInjector function specifies its providers and imports array to
be optional, so if no providers/imports are present these keys may be
omitted. This commit updates the compiler to only generate the keys when
necessary.
PR Close#29598
Prior to this change, a module's imports and exports would be used verbatim
as an injectors' imports. This is detrimental for tree-shaking, as a
module's exports could reference declarations that would then prevent such
declarations from being eligible for tree-shaking.
Since an injector actually only needs NgModule references as its imports,
we may safely filter out any declarations from the list of module exports.
This makes them eligible for tree-shaking once again.
PR Close#29598
Prior to this change, all module metadata would be included in the
`defineNgModule` call that is set as the `ngModuleDef` field of module
types. Part of the metadata is scope information like declarations,
imports and exports that is used for computing the transitive module
scope in JIT environments, preventing those references from being
tree-shaken for production builds.
This change moves the metadata for scope computations to a pure function
call that patches the scope references onto the module type. Because the
function is marked pure, it may be tree-shaken out during production builds
such that references to declarations and exports are dropped, which in turn
allows for tree-shaken any declaration that is not otherwise referenced.
Fixes#28077, FW-1035
PR Close#29598
In some cases ivy expects projectable nodes to be passed in a different order
to ViewEngine. Specifically, ivy expects the catch-all ("*") to be at index
0, whereas ViewEngine expects it to be at its position at which it was parsed
in the template.
This commit adds one test that breaks under ivy and others that just describe
more accurately what happens in corner cases.
PR Close#27791
Previously, only directives and services with generic type parameters
would emit `any` as generic type when emitting Ivy metadata into .d.ts
files. Pipes can also have generic type parameters but did not emit
`any` for all type parameters, resulting in the omission of those
parameters which causes compilation errors.
This commit adds support for pipes with generic type arguments and emits
`any` as generic type in the Ivy metadata.
Fixes#29400
PR Close#29403
This PR alligns markup language lexer with the previous behaviour in version 7.x:
https://stackblitz.com/edit/angular-iancj2
While this behaviour is not perfect (we should be giving users an error message
here about invalid HTML instead of assuming text node) this is probably best we
can do without more substential re-write of lexing / parsing infrastructure.
This PR just fixes#29231 and restores VE behaviour - a more elaborate fix will
be done in a separate PR as it requries non-trivial rewrites.
PR Close#29328
This patch is the first of a few patches which separates the
styling logic between template bindings (e.g. <div [style])
from host bindings (e.g. @HostBinding('style')). This patch
in particular introduces a series of host-specific styling
instructions and changes the existing set of template styling
instructions not to accept directives. The underyling code (which
communicates with the styling algorithm) still works as it did
before.
This PR also separates the styling instruction code into a separate
file and moves over all other instructions into an dedicated
instructions directory.
PR Close#29292
This PR alligns markup language lexer with the previous behaviour in version 7.x:
https://stackblitz.com/edit/angular-iancj2
While this behaviour is not perfect (we should be giving users an error message
here about invalid HTML instead of assuming text node) this is probably best we
can do without more substential re-write of lexing / parsing infrastructure.
This PR just fixes#29231 and restores VE behaviour - a more elaborate fix will
be done in a separate PR as it requries non-trivial rewrites.
PR Close#29328
BREAKING CHANGE:
Certain elements (like `<tr>` or `<col>`) require parent elements to be of a certain type by the HTML specification
(ex. <tr> can only be inside <tbody> / <thead>). Before this change Angular template parser was auto-correcting
"invalid" HTML using the following rules:
- `<tr>` would be wrapped in `<tbody>` if not inside `<tbody>`, `<tfoot>` or `<thead>`;
- `<col>` would be wrapped in `<colgroup>` if not inside `<colgroup>`.
This meachanism of automatic wrapping / auto-correcting was problematic for several reasons:
- it is non-obvious and arbitrary (ex. there are more HTML elements that has rules for parent type);
- it is incorrect for cases where `<tr>` / `<col>` are at the root of a component's content, ex.:
```html
<projecting-tr-inside-tbody>
<tr>...</tr>
</projecting-tr-inside-tbody>
```
In the above example the `<projecting-tr-inside-tbody>` component culd be "surprised" to see additional
`<tbody>` elements inserted by Angular HTML parser.
PR Close#29219
Previously, ngtsc would resolve forward references while evaluating the
bootstrap, declaration, imports, and exports fields of NgModule types.
However, when generating the resulting ngModuleDef, the forward nature of
these references was not taken into consideration, and so the generated JS
code would incorrectly reference types not yet declared.
This commit fixes this issue by introducing function closures in the
NgModuleDef type, similarly to how NgComponentDef uses them for forward
declarations of its directives and pipes arrays. ngtsc will then generate
closures when required, and the runtime will unwrap them if present.
PR Close#29198
Currently with ViewEngine, if someone runs the platform's
`bootstrapModule` method in order to boostrap a module in
JIT mode, external component resources are properly resolved
*automatically*.
Currently with Ivy, the developer would need to manually call
`resolveComponentResources` in order to asynchronously fetch
the determined external component resources. In order to make
this backwards compatible with ViewEngine, and also since
platforms can already specify a `ResourceLoader` compiler
provider, we need to automatically resolve all external
component resources on module bootstrap.
--
Since the `ResourceLoader` is part of the `@angular/compiler`,
because ViewEngine performed the factory creation in the compiler,
we can't access the `ResourceLoader` token from within core.
In order to workaround this without introducing a breaking change,
we just proxy the `ResourceLoader` token to `core` through the
compiler facade. In the future, we should be able to move the
`ResourceLoader` to core when ViewEngine code no longer exists in
the `@angular/compiler`.
PR Close#29083
At the moment, certain tests relies on resolving the module with an index.d.ts, this root cause might be some implementations are missing from the mocks.
Similar to: 58b4045359
PR Close#28884
Prior to this commit, i18n instructions (i18n, i18nStart) were generated before listener instructions. As a result, event listeners were attached to the wrong element (text node, not the parent element). This change updates the order of instructions and puts i18n ones after listeners, to make sure listeners are attached to the right elements.
PR Close#29173
For the template type checking to work correctly, it needs to know
what attributes are bound to expressions or directives, which may
require expressions in the template to be evaluated in a different
scope.
In inline templates, there are attributes that are now marked as
"Template" attributes. We need to ensure that the template
type checking code looks at these "bound" attributes as well as the
"input" attributes.
PR Close#29041
The content projection mechanism is static, in that it only looks at the static
template nodes before directives are matched and change detection is run.
When you have a selector-based content projection the selection is based
on nodes that are available in the template.
For example:
```
<ng-content selector="[some-attr]"></ng-content>
```
would match
```
<div some-attr="..."></div>
```
If you have an inline-template in your projected nodes. For example:
```
<div *ngIf="..." some-attr="..."></div>
```
This gets pre-parsed and converted to a canonical form.
For example:
```
<ng-template [ngIf]="...">
<div some-attr=".."></div>
</ng-template>
```
Note that only structural attributes (e.g. `*ngIf`) stay with the `<ng-template>`
node. The other attributes move to the contained element inside the template.
When this happens in ivy, the ng-template content is removed
from the component template function and is compiled into its own
template function. But this means that the information about the
attributes that were on the content are lost and the projection
selection mechanism is unable to match the original
`<div *ngIf="..." some-attr>`.
This commit adds support for this in ivy. Attributes are separated into three
groups (Bindings, Templates and "other"). For inline-templates the Bindings
and "other" types are hoisted back from the contained node to the `template()`
instruction, so that they can be used in content projection matching.
PR Close#29041
This commit adds a new `AttributeMarker` type that will be used, in a
future commit, to mark attributes as coming from an inline-template
expansion, rather than the element that is being contained in the template.
PR Close#29041
Prior to this change, the RegExp that was used to check for dashes in field names used "g" (global) flag that retains lastIndex, which might result in skipping some fields that should be wrapped in quotes (since lastIndex advanced beyond the next "-" location). This commit removes this flag and updates the test to make sure there are no regressions.
PR Close#29126
ngtsc occasionally converts a type reference (such as the type of a
parameter in a constructor) to a value reference (argument to a
directiveInject call). TypeScript has a bad habit of sometimes removing
the import statement associated with this type reference, because it's a
type only import when it initially looks at the file.
A solution to this is to always add an import to refer to a type position
value that's imported, and not rely on the existing import.
PR Close#29111
Prior to this change, keys in "inputs" and "outputs" objects generated by compiler were not checked against unsafe characters. As a result, in some cases the generated code was throwing JS error. Now we check whether a given key contains any unsafe chars and wrap it in quotes if needed.
PR Close#28919
ngtsc has cyclic import detection, to determine when adding an import to a
directive or pipe would create a cycle. However, this detection must also
account for already inserted imports, as it's possible for both directions
of a circular import to be inserted by Ivy (as opposed to at least one of
those edges existing in the user's program).
This commit fixes the circular import detection for components to take into
consideration already added edges. This is difficult for one critical
reason: only edges to files which will *actually* be imported should be
considered. However, that depends on which directives & pipes are used in
a given template, which is currently only known by running the
TemplateDefinitionBuilder during the 'compile' phase. This is too late; the
decision whether to use remote scoping (which consults the import graph) is
made during the 'resolve' phase, before any compilation has taken place.
Thus, the only way to correctly consider synthetic edges is for the compiler
to know exactly which directives & pipes are used in a template during
'resolve'. There are two ways to achieve this:
1) refactor `TemplateDefinitionBuilder` to do its work in two phases, with
directive matching occurring as a separate step which can be performed
earlier.
2) use the `R3TargetBinder` in the 'resolve' phase to independently bind the
template and get information about used directives.
Option 1 is ideal, but option 2 is currently used for practical reasons. The
cost of binding the template can be shared with template-typechecking.
PR Close#29040
In the @Component decorator, the 'host' field is an object which represents
host bindings. The type of this field is complex, but is generally of the
form {[key: string]: string}. Several different kinds of bindings can be
specified, depending on the structure of the key.
For example:
```
@Component({
host: {'[prop]': 'someExpr'}
})
```
will bind an expression 'someExpr' to the property 'prop'. This is known to
be a property binding because of the square brackets in the binding key.
If the binding key is a plain string (no brackets or parentheses), then it
is known as an attribute binding. In this case, the right-hand side is not
interpreted as an expression, but is instead a constant string.
There is no actual requirement that at build time, these constant strings
are known to the compiler, but this was previously enforced as a side effect
of requiring the binding expressions for property and event bindings to be
statically known (as they need to be parsed). This commit breaks that
relationship and allows the attribute bindings to be dynamic. In the case
that they are dynamic, the references to the dynamic values are reflected
into the Ivy instructions for attribute bindings.
PR Close#29033
This change helps highlight certain misoptimizations with Closure
compiler. It is also stylistically preferable to consistently use index
access on index sig types.
Roughly, when one sees '.foo' they know it is always checked for typos
in the prop name by the type system (unless 'any'), while "['foo']" is
always not.
Once all angular repos are conforming this will become a tsetse.info
check, enforced by bazel.
PR Close#28937
Previously the start of a character indicated by an escape sequence
was being incorrectly computed by the lexer, which caused tokens
to include the start of the escaped character sequence in the
preceding token. In particular this affected the name extracted
from opening tags if the name was terminated by an escape sequence.
For example, `<t\n>` would have the name `t\` rather than `t`.
This fix refactors the lexer to use a "cursor" object to iterate over
the characters in the template source. There are two cursor implementations,
one expects a simple string, the other expects a string that contains
JavaScript escape sequences that need to be unescaped.
PR Close#28978
The parts of a token are supposed to be an array of not-null strings,
but we were using `null` for tags that had no prefix. This has been
fixed to use the empty string in such cases, which allows the `null !`
hack to be removed.
PR Close#28978
Angular supports using <style> and <link> tags inline in component
templates, but previously such tags were not implemented within the ngtsc
compiler. This commit introduces that support.
FW-1069 #resolve
PR Close#28997
Prior to this change i18n block bindings were converted to Expressions right away (once we first access them), when in non-i18n cases we processed them differently: the actual conversion happens at instructions generation. Because of this discrepancy, the output for bindings in i18n blocks was generated incorrectly (with invalid indicies in pipeBindN fns and invalid references to non-existent local variables). Now the bindings processing is unified and i18nExp instructions should contain right bind expressions.
PR Close#28969
Prior to this change, the logic that outputs i18n consts (like `const MSG_XXX = goog.getMsg(...)`) didn't have a check whether a given const that represent a certain i18n message was already included into the generated output. This commit adds the logic to mark corresponding i18n contexts after translation was generated, to avoid duplicate consts in the output.
PR Close#28967
During build time we remap particular property bindings, because their names don't match their attribute equivalents (e.g. the property for the `for` attribute is called `htmlFor`). This breaks down if the particular element has an input that has the same name, because the property gets mapped to something invalid.
The following changes address the issue by mapping the name during runtime, because that's when directives are resolved and we know all of the inputs that are associated with a particular element.
PR Close#28765
Prior to this change presence of HTML comments inside <ng-content> caused compiler to throw an error that <ng-content> is not empty. Now HTML comments are not considered as a meaningful content, thus no error is thrown. This behavior is now aligned in Ivy/VE.
PR Close#28849
This commit adds support for the `static: true` flag in `ContentChild`
queries. Prior to this commit, all `ContentChild` queries were resolved
after change detection ran. This is a problem for backwards
compatibility because View Engine also supported "static" queries which
would resolve before change detection.
Now if users add a `static: true` option, the query will be resolved in
creation mode (before change detection runs). For example:
```ts
@ContentChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
This commit adds support for the `static: true` flag in
`ViewChild` queries. Prior to this commit, all `ViewChild`
queries were resolved after change detection ran. This is
a problem for backwards compatibility because View Engine
also supported "static" queries which would resolve before
change detection.
Now if users add a `static: true` option, the query will be
resolved in creation mode (before change detection runs).
For example:
```ts
@ViewChild(TemplateRef, {static: true}) template !: TemplateRef;
```
This feature will come in handy for components that need
to create components dynamically.
PR Close#28811
Prior to this commit, the timing of `ViewChild`/`ContentChild` query
resolution depended on the results of each query. If any results
for a particular query were nested inside embedded views (e.g.
*ngIfs), that query would be resolved after change detection ran.
Otherwise, the query would be resolved as soon as nodes were created.
This inconsistency in resolution timing had the potential to cause
confusion because query results would sometimes be available in
ngOnInit, but sometimes wouldn't be available until ngAfterContentInit
or ngAfterViewInit. Code depending on a query result could suddenly
stop working as soon as an *ngIf or an *ngFor was added to the template.
With this commit, users can dictate when they want a particular
`ViewChild` or `ContentChild` query to be resolved with the `static`
flag. For example, one can mark a particular query as `static: false`
to ensure change detection always runs before its results are set:
```ts
@ContentChild('foo', {static: false}) foo !: ElementRef;
```
This means that even if there isn't a query result wrapped in an
*ngIf or an *ngFor now, adding one to the template later won't change
the timing of the query resolution and potentially break your component.
Similarly, if you know that your query needs to be resolved earlier
(e.g. you need results in an ngOnInit hook), you can mark it as
`static: true`.
```ts
@ViewChild(TemplateRef, {static: true}) foo !: TemplateRef;
```
Note: this means that your component will not support *ngIf results.
If you do not supply a `static` option when creating your `ViewChild` or
`ContentChild` query, the default query resolution timing will kick in.
Note: This new option only applies to `ViewChild` and `ContentChild`
queries, not `ViewChildren` or `ContentChildren` queries, as those types
already resolve after CD runs.
PR Close#28810
Accounts for schemas in when validating properties in Ivy.
This PR resolves FW-819.
A couple of notes:
* I had to rework the test slightly, in order to have it fail when we expect it to. The one in master is passing since Ivy's validation runs during the update phase, rather than creation.
* I had to deviate from the design in FW-819 and not add an `enableSchema` instruction, because the schema is part of the `NgModule` scope, however the scope is only assigned to a component once all of the module's declarations have been resolved and some of them can be async. Instead, I opted to have the `schemas` on the component definition.
PR Close#28637
Since we build and publish the individual packages
using Bazel and `build.sh` has been removed, we can
safely remove the `rollup.config.js` files which are no
longer needed because the `ng_package` bazel rule
automatically handles the rollup settings and globals.
PR Close#28646
In the past, @Injectable had no side effects and existing Angular code is
therefore littered with @Injectable usage on classes which are not intended
to be injected.
A common example is:
@Injectable()
class Foo {
constructor(private notInjectable: string) {}
}
and somewhere else:
providers: [{provide: Foo, useFactory: ...})
Here, there is no need for Foo to be injectable - indeed, it's impossible
for the DI system to create an instance of it, as it has a non-injectable
constructor. The provider configures a factory for the DI system to be
able to create instances of Foo.
Adding @Injectable in Ivy signifies that the class's own constructor, and
not a provider, determines how the class will be created.
This commit adds logic to compile classes which are marked with @Injectable
but are otherwise not injectable, and create an ngInjectableDef field with
a factory function that throws an error. This way, existing code in the wild
continues to compile, but if someone attempts to use the injectable it will
fail with a useful error message.
In the case where strictInjectionParameters is set to true, a compile-time
error is thrown instead of the runtime error, as ngtsc has enough
information to determine when injection couldn't possibly be valid.
PR Close#28523
Testing of Ivy revealed two bugs in the AstMemoryEfficientTransformer
class, a part of existing View Engine compiler infrastructure that's
reused in Ivy. These bugs cause AST expressions not to be transformed
under certain circumstances.
The fix is simple, and tests are added to ensure the specific expression
forms that trigger the issue compile properly under Ivy.
PR Close#28523
Prior to this update we had separate contentQueries and contentQueriesRefresh functions to handle creation and update phases. This approach was inconsistent with View Queries, Host Bindings and Template functions that we generate for Component/Directive defs. Now the mentioned 2 functions are combines into one (contentQueries), creation and update logic is separated with RenderFlags (similar to what we have in other generated functions).
PR Close#28503
With #28594 we refactored the `@angular/compiler` slightly to
allow opting out from external symbol re-exports which are
enabled by default.
Since symbol re-exports only benefit projects which have a
very strict dependency enforcement, external symbols should
not be re-exported by default as this could grow the size of
factory files and cause unexpected behavior with Angular's
AOT symbol resolving (e.g. see: #25644).
Note that the common strict dependency enforcement for source
files does still work with external symbol re-exports disabled,
but there are also strict dependency checks that enforce strict
module dependencies also for _generated files_ (such as the
ngfactory files). This is how Google3 manages it's dependencies
and therefore external symbol re-exports need to be enabled within
Google3.
Also "ngtsc" also does not provide any way of using external symbol
re-exports, so this means that with this change, NGC can partially
match the behavior of "ngtsc" then (unless explicitly opted-out).
As mentioned before, internally at Google symbol re-exports need to
be still enabled, so the `ng_module` Bazel rule will enable the symbol
re-exports by default when running within Blaze.
Fixes#25644.
PR Close#28633
Previously, using a pipe in an input binding on an ng-template would
evaluate the pipe in the context of node that was processed before the
template. This caused the retrieval of e.g. ChangeDetectorRef to be
incorrect, resulting in one of the following bugs depending on the
template's structure:
1. If the template was at the root of a view, the previously processed
node would be the component's host node outside of the current view.
Accessing that node in the context of the current view results in a crash.
2. For templates not at the root, the ChangeDetectorRef injected into the
pipe would correspond with the previously processed node. If that node
hosts a component, the ChangeDetectorRef would not correspond with the
view that the ng-template is part of.
The solution to the above problem is two-fold:
1. Template compilation is adjusted such that the template instruction
is emitted before any instructions produced by input bindings, such as
pipes. This ensures that pipes are evaluated in the context of the
template's container node.
2. A ChangeDetectorRef can be requested for container nodes.
Fixes#28587
PR Close#27565
During analysis, the `ComponentDecoratorHandler` passes the component
template to the `parseTemplate()` function. Previously, there was little or
no information about the original source file, where the template is found,
passed when calling this function.
Now, we correctly compute the URL of the source of the template, both
for external `templateUrl` and in-line `template` cases. Further in the
in-line template case we compute the character range of the template
in its containing source file; *but only in the case that the template is
a simple string literal*. If the template is actually a dynamic value like
an interpolated string or a function call, then we do not try to add the
originating source file information.
The translator that converts Ivy AST nodes to TypeScript now adds these
template specific source mappings, which account for the file where
the template was found, to the templates to support stepping through the
template creation and update code when debugging an Angular application.
Note that some versions of TypeScript have a bug which means they cannot
support external template source-maps. We check for this via the
`canSourceMapExternalTemplates()` helper function and avoid trying to
add template mappings to external templates if not supported.
PR Close#28055
When template bindings are being parsed the event handlers
were receiving a source span that included the whole attribute.
Now they get a span that is focussed on the handler itself.
PR Close#28055
The `convertActionBinding()` now accepts an optional `baseSourceSpan`,
which is the start point of the action expression being converted in the
original source code. This is used to compute the original position of
the output AST nodes.
PR Close#28055
When tokenizing markup (e.g. HTML) element attributes
can have quoted or unquoted values (e.g. `a=b` or `a="b"`).
The `ATTR_VALUE` tokens were capturing the quotes, which
was inconsistent and also affected source-mapping.
Now the tokenizer captures additional `ATTR_QUOTE` tokens,
which the HTML related parsers understand and factor into their
token parsing.
PR Close#28055
There are some differences in how ivy maps template source
compared to View Engine. In this commit we recreate the View Engine
tests for ivy.
PR Close#28055
Previously the call to `extractSourceMap()` would only work if the
`//#sourceMappingURL ...` was the last line of the file. This doesn't
work if the code is JIT evaluated as the comment is actually the last
line in the body of a function, wrapped by curly-braces.
PR Close#28055
When testing JIT code, it is useful to be able to access the
generated JIT source. Previously this is done by spying on the
global `Function` object, to capture the code when it is being
evaluated. This is problematic because you can only capture
the body of the function, and not the arguments, which messes
up line and column positions for source mapping for instance.
Now the code that generates and then evaluates JIT code is
wrapped in a `JitEvaluator` class, making it possible to provide
a mock implementation that can capture the generated source of
the function passed to `executeFunction(fn: Function, args: any[])`.
PR Close#28055
In order to support source mapping of templates, we need
to be able to tokenize the template in its original context.
When the template is defined inline as a JavaScript string
in a TS/JS source file, the tokenizer must be able to handle
string escape sequences, such as `\n` and `\"` as they
appear in the original source file.
This commit teaches the lexer how to unescape these
sequences, but only when the `escapedString` option is
set to true. Otherwise there is no change to the tokenizing
behaviour.
PR Close#28055
The lexer that does the tokenizing can now process only a part the source
string, by passing a `range` property in the `options` argument. The
locations of the nodes that are tokenized will now take into account the
position of the span in the context of the original source string.
This `range` option is, in turn, exposed from the template parser as well.
Being able to process parts of files helps to enable SourceMap support
when compiling inline component templates.
PR Close#28055
When we added the strict null checks, the lexer had some `!`
operators added to prevent the compilation from failing.
This commit resolves this problem correctly and removes the
hacks.
Also the comment
```
// Note: this is always lowercase!
```
has been removed as it is no longer true.
See #24571
PR Close#28055
This commit consolidates the options that can modify the
parsing of text (e.g. HTML, Angular templates, CSS, i18n)
into an AST for further processing into a single `options`
hash.
This makes the code cleaner and more readable, but also
enables us to support further options to parsing without
triggering wide ranging changes to code that should not
be affected by these new options. Specifically, it will let
us pass information about the placement of a template
that is being parsed in its containing file, which is essential
for accurate SourceMap processing.
PR Close#28055
Up until now, `[style]` and `[class]` bindings (the map-based ones) have only
worked as template bindings and have not been supported at all inside of host
bindings. This patch ensures that multiple host binding sources (components and
directives) all properly assign style values and merge them correctly in terms
of priority.
Jira: FW-882
PR Close#28246
Previously, it wasn't possible to compile template that contains pipe in context of ternary operator `{{ 1 ? 2 : 0 | myPipe }}` due to the error `Error: Illegal state: Pipes should have been converted into functions. Pipe: async`.
This PR fixes a typo in expression parser so that pipes are correctly converted into functions.
PR Close#28635
Prior to this change in Ivy we had strict check that disabled non-unique #localRefs usage within a given template. While this limitation was technically present in View Engine, in many cases View Engine neglected this restriction and as a result, some apps relied on a fact that multiple non-unique #localRefs can be defined and utilized to query elements via @ViewChild(ren) and @ContentChild(ren). In order to provide better compatibility with View Engine, this commit removes existing restriction.
As a part of this commit, are few tests were added to verify VE and Ivy compatibility in most common use-cases where multiple non-unique #localRefs were used.
PR Close#28627
Currently external static symbols which are referenced by AOT
compiler generated code, will be re-exported in the corresponding
`.ngfactory` files.
This way of handling the symbol resolution has been introduced in
favor of avoding dynamically generated module dependencies. This
behavior therefore avoids any strict dependency failures.
Read more about a particular scenario here: https://github.com/angular/angular/issues/25644#issuecomment-458354439
Now with `ngtsc`, this behavior has changed since `ngtsc` just
introduces these module dependencies in order to properly reference
the external symbol from its original location (also eliminating the need
for factories). Similarly we should provide a way to use the same
behavior with `ngc` because the downside of using the re-exported symbol
resolution is that user-code transformations (e.g. the `ngInjectableDef`
metadata which is added to the user source code), can resolve external
symbols to previous factory symbol re-exports. This is a critical issue
because it means that the actual JIT code references factory files in order
to access external symbols. This means that the generated output cannot
shipped to NPM without shipping the referenced factory files.
A specific example has been reported here: https://github.com/angular/angular/issues/25644#issue-353554070
PR Close#28594
Prior to this change there was no i18n id sanitization before we output goog.getMsg calls. Due to the fact that message ids are used as a part of const names, some characters were bcausing issues while executing generated code. This commit adds sanitization to i18n ids used to generate i18n-related consts.
PR Close#28522
Prior to this change, generation of host bindings and host styles was guarded by the "if" statement, which always returned true. Enforcing more strict check for bindings length broke some tests, since host styling instructions generation were inside the same "if" block. This update decouples bindings instruction generation from styling instructions, which makes it less error prone.
PR Close#28379
Prior to this change we may encounter some errors (like pipes being used where they should not be used) while compiling Host Bindings and Listeners. With this update we move validation logic to the analyze phase and throw an error if something is wrong. This also aligns error messages between Ivy and VE.
PR Close#28356
Prior to this change contentQueriesRefresh functions that represent refresh logic for @ContentQuery list were not composable, which caused problems in case one Directive inherits another one and both of them contain Content Queries. Due to the fact that we used indices to reference queries in refresh function, results were placed into wrong Queries. In order to avoid that we no longer use indices to reference queries and instead maintain current content query index while iterating through them. This allows us to compose contentQueriesRefresh functions and make inheritance feature work with Content Queries.
PR Close#28324
Currently `compileNgModule` generates an empty array for optional fields that are omitted from an `NgModule` declaration (e.g. `bootstrap`, `exports`). This isn't necessary, because `defineNgModule` has some code to default these fields to empty arrays at runtime if they aren't defined. The following changes will only output code if there are values for the particular field.
PR Close#28387
By its nature, Ivy alters the import graph of a TS program, adding imports
where template dependencies exist. For example, if ComponentA uses PipeB
in its template, Ivy will insert an import of PipeB into the file in which
ComponentA is declared.
Any insertion of an import into a program has the potential to introduce a
cycle into the import graph. If for some reason the file in which PipeB is
declared imports the file in which ComponentA is declared (maybe it makes
use of a service or utility function that happens to be in the same file as
ComponentA) then this could create an import cycle. This turns out to
happen quite regularly in larger Angular codebases.
TypeScript and the Ivy runtime have no issues with such cycles. However,
other tools are not so accepting. In particular the Closure Compiler is
very anti-cycle.
To mitigate this problem, it's necessary to detect when the insertion of
an import would create a cycle. ngtsc can then use a different strategy,
known as "remote scoping", instead of directly writing a reference from
one component to another. Under remote scoping, a function
'setComponentScope' is called after the declaration of the component's
module, which does not require the addition of new imports.
FW-647 #resolve
PR Close#28169
Prior to this change `viewQuery` functions that represent @ViewQuery list were not composable, which caused problems in case one Component/Directive inherits another one and both of them contain View Queries. Due to the fact that we used indices to reference queries, resulting query set was corrupted (child component queries were overridden by super class ones). In order to avoid that we no longer use indices assigned at compile time and instead maintain current view query index while iterating through them. This allows us to compose `viewQuery` functions and make inheritance feature work with View Queries.
PR Close#28309
- Wraps the NgOnChangesFeature in a factory such that no side effects occur in the module root
- Adds comments to ngInherit property on feature definition interface to help guide others not to make the same mistake
- Updates compiler to generate the feature properly after the change to it being a factory
- Updates appropriate tests
PR Close#28187
Fixes the template generation function generating an incorrect tag name when the element has a namespace (e.g. `:svg:circle` gets generated rather than `circle`).
PR Close#28298
Due to the fact that animations in Angular are defined in the component metadata,
all animation trigger definitions are localized to the component and are
inaccessible outside of it. Animation host listeners in Ivy are
rendered in the context of the parent component, but the VE renders them
differently. This patch ensures that animation host listeners are
always registered in the sub component's renderer
Jira issue: FW-943
Jira issue: FW-958
PR Close#28210
In Ivy when elements are created a series of static attribute names are provided
over to the construction instruction of that element. Static attribute names
include non-binding attribues (like `<div selected>`) as well as animation bindings
that do not have a RHS value (like `<div @foo>`). Because of this distinction,
value-less animation triggers are rendered first before value-full animation
bindings are and this improper ordering has caused various existing tests to fail.
This patch ensures that animation bindings are evaluated in the order that they
exist within the HTML template code (or host binding code).
PR Close#28165
With the refactoring or how styles/classes are implmented in Ivy,
interpolation has caused the binding code to mess up since interpolation
itself takes up its own slot in Ivy's memory management code. This patch
makes sure that interpolation works as expected with class and style
bindings.
Jira issue: FW-944
PR Close#28190
Prior to this change element's i18n attributes like "i18n-title" were processed after "i18n" ones that placed "i18n" and "i18nAttributes" instructions in wrong order, thus "i18nAttributes" failed to target its host element at runtime. This change updates processing order and puts "i18nAttributes" instructions in front of "i18n" ones to resolve the problem.
PR Close#28163
Up until this point, all static attribute values (things like `title` and `id`)
defined within the `host` are of a Component/Directive definition were
generated into a `def.attributes` array and then processed at runtime.
This design decision does not lend itself well to tree-shaking and is
inconsistent with other static values such as styles and classes.
This fix ensures that all static attribute values (attributes, classes,
and styles) that exist within a host definition for components and
directives are all assigned via the `elementHostAttrs` instruction.
```
// before
defineDirective({
...
attributes: ['title', 'my title']
...
})
//now
defineDirective({
...
hostBindings: function() {
if (create) {
elementHostAttrs(..., ['title', 'my-title']);
}
...
}
...
})
```
PR Close#28089
Prior to this change we performed prop and attr name validation at compile time, which failed in case a given prop/attr is an input to a Directive (thus should not be a subject to this check). Since Directive matching in Ivy happens at runtime, the corresponding checks are now moved to runtime as well.
PR Close#28054
This update aligns Ivy behavior with ViewEngine related to empty bindings (for example <div [someProp]></div>): empty bindings are ignored.
PR Close#28059
Libraries that create components dynamically using component factories,
such as `@angular/upgrade` need to pass blocks of projected content
through to the `ComponentFactory.create()` method. These blocks
are extracted from the content by matching CSS selectors defined in
`<ng-content select="..">` tags found in the component's template.
The Angular compiler collects these CSS selectors when compiling a component's
template, and exposes them via the `ComponentFactory.ngContentSelectors`
property.
This change ensures that this property is filled correctly when the
component factory is created by compiling a component with the Ivy engine.
PR Close#27867
exportAs in @Directive metadata supports multiple values, separated by
commas. Previously it was treated as a single value string.
This commit modifies the compiler to understand that exportAs is a
string[]. It stops short of carrying the multiple values through to the
runtime. Instead, it only emits the first one. A future commit will modify
the runtime to accept all the values.
PR Close#28001
This commit adds sanitization for `elementProperty` and `elementAttribute` instructions used in `hostBindings` function, similar to what we already have in the `template` function. Main difference is the fact that for some attributes (like "href" and "src") we can't define which SecurityContext they belong to (URL vs RESOURCE_URL) in Compiler, since information in Directive selector may not be enough to calculate it. In order to resolve the problem, Compiler injects slightly different sanitization function which detects proper Security Context at runtime.
PR Close#27939
This update introduces support for global object (window, document, body) listeners, that can be defined via host listeners on Components and Directives.
PR Close#27772
test.sh is no longer needed... all the tests should now be executed via bazel.
if for whatever reason we need to run the legacy unit test setup, we should should follow the commands that we use to execute those tests in .circle/config.yaml
PR Close#27937
Previously, there could be identical template/listener function names
for a component's template, if it had multiple similarly structured
nested sub-templates or listeners.
This resulted in build errors:
`Identifier '<SOME_IDENTIFIER>' has already been declared`
This commit fixes this by ensuring that the template index is included
in the `contextName` passed to the `TemplateDefinitionBuilder`
responsible for processing nested sub-templates.
Similarly, the template or element index is included in the listener
names.
PR Close#27766