If the testcase has not specified that errors were expected, then any
errors that have occurred should be reported. These errors may have
prevented an output file from being generated, which resulted in hard
to debug test failures due to missing files.
PR Close#39862
The Language Service "find references" currently uses the
`ngtypecheck.ts` suffix to determine if a file is a shim file. Instead,
a better API would be to expose a method in the template type checker
that does this verification so that the LS does not have to "know" about
the typecheck suffix. This also fixes an issue (albeit unlikely) whereby a file
in the user's program that _actually_ is named with the `ngtypecheck.ts`
suffix would have been interpreted as a shim file.
PR Close#39768
This commit adds "find references" functionality to the Ivy integrated
language service. The basic approach is as follows:
1. Generate shims for all files to ensure we find references in shims
throughout the entire program
2. Determine if the position for the reference request is within a
template.
* Yes, it is in a template: Find which node in the template AST the
position refers to. Then find the position in the shim file for that
template node. Pass the shim file and position in the shim file along
to step 3.
* No, the request for references was made outside a template: Forward
the file and position to step 3.
3. (`getReferencesAtTypescriptPosition`): Call the native TypeScript LS
`getReferencesAtPosition`. For each reference that is in a shim file, map those
back to a template location, otherwise return it as-is.
PR Close#39768
There were two issues with the current TCB:
1. The logic for only wrapping the right hand side of the property write
if it was not already a parenthesized expression was incorrect. A
parenthesized expression could still have a trailing comment, and if
that were the case, that span comment would still be ambiguous, as explained
by the comment in the code before `wrapForTypeChecker`.
2. The right hand side of keyed writes was not wrapped in parens at all
PR Close#39768
In order to map the a safe property read's method access in the type check block
directly back to the property in the template source, we need to
include the `SafePropertyRead`'s `nameSpan` with the `ts.propertyAccess` for
the pipe's transform method.
Note that this is specifically relevant to the Language Service's "find
references" feature. As an example, with something like `{{a?.value}}`,
when calling "find references" on the 'value' we want the text
span of the reference to just be `value` rather than the entire source
`a?.value`.
PR Close#39768
In order to map the pipe's `transform` method in the type check block
directly back to the pipe name in the template source, we need to
include the `BindingPipe`'s `nameSpan` with the `ts.methodAccess` for
the pipe's transform method.
Note that this is specifically relevant to the Language Service's "find
references" feature. As an example, with something like `-2.5 | number:'1.0-0'`,,
when calling "find references" on the 'number' pipe we want the text
span of the reference to just be `number` rather than the entire binding
pipe's source `-2.5 | number:'1.0-0'`.
PR Close#39768
Previously this would have just printed that `false` was not equal to
`true`, which, although true, is not very helpful. This commit adds
details about which special check failed together with the generated
code, for easier debugging.
PR Close#39863
This commit provides the machinery for the new file-based compliance test
approach for i18n tests, and migrates the i18n tests to this new format.
PR Close#39661
This commit implements partial compilation of components, together with
linking the partial declaration into its full AOT output.
This commit does not yet enable accurate source maps into external
templates. This requires additional work to account for escape sequences
which is non-trivial. Inline templates that were represented using a
string or template literal are transplated into the partial declaration
output, so their source maps should be accurate. Note, however, that
the accuracy of source maps is not currently verified in tests; this is
also left as future work.
The golden files of partial compilation output have been updated to
reflect the generated code for components. Please note that the current
output should not yet be considered stable.
PR Close#39707
In production mode this flag defaults to `true`, but the compliance
tests override this to `false` unless it is provided. As such, the
linker should also adhere to this default as otherwise the compilation
output would not align with the output of the full tests.
There are still tests that exercise the value of this flag, together
with it being `undefined` to verify the behavior of the actual default
value.
PR Close#39707
The linker does not currently support outputting ES5 syntax, so any
compliance tests that request ES5 output cannot be run in partial
compilation mode. This commit marks these tests as pending.
PR Close#39707
This commit adds the `i18nUseExternalIds` option to the linker options,
as the compliance tests exercise compilation results with and without
this flag enabled. We therefore need to configure the linker to take
this option into account, as otherwise the compliance test output would
not be identical.
Additionally, this commit switches away from spread syntax to set
the default options. This introduced a problem when the user-provided
options object did specify the keys, but with an undefined value. This
would have prevented the default options from being applied.
PR Close#39707
The metadata specification of queries allows for the boolean properties
`first`, `descendants` and `static` to be missing, but the linker did
not account for their omission.
This fix is tested in subsequent commits that implement compilation of
components, at which point this will be covered by the compliance tests.
PR Close#39707
The compilation result of components may have inserted template
functions into the constant pool, which would be inserted into the Babel
AST upon program exit. Babel will then proceed with visiting this newly
inserted subtree, but we have already cleaned up the linker instance
when exiting the program. Any call expressions within the template
functions would then fail to be processed, as a file linker would no
longer be available.
Since the inserted AST subtree is known not to contain yet more partial
declarations, it is safe to skip visiting call expressions when no
file linker is available.
PR Close#39707
The type checker had to do extensive work in resolving the
`NodePath.get` method call for the `NodePath` that had an intersection
type of `ts.VariableDeclarator&{init:t.Expression}`. The `NodePath.get`
method is typed using a conditional type which became expensive to
compute with this intersection type. As a workaround, the original
`init` property is explicitly omitted which avoids the performance
cliff. This brings down the compile time by 15s.
PR Close#39707
The JSON schema reference was off-by-one, preventing IDEs from finding
the file and offering suggestions and documentation. Additionally the
name of the golden file was slightly off.
PR Close#39707
If a template declares a reference to a missing target then referring to
that reference from elsewhere in the template would crash the template
type checker, due to a regression introduced in #38618. This commit
fixes the crash by ensuring that the invalid reference will resolve to
a variable of type any.
Fixes#39744
PR Close#39805
When the `preserveWhitespaces` is not true, the template parser will
process the parsed AST nodes to remove excess whitespace. Since the
generated `goog.getMsg()` statements rely upon the AST nodes after
this whitespace is removed, the i18n extraction must make a second pass.
Previously this resulted in innacurrate source-spans for the i18n text and
placeholder nodes that were extracted in the second pass.
This commit fixes this by reusing the source-spans from the first pass
when extracting the nodes in the second pass.
Fixes#39671
PR Close#39717
Consumers of the `TemplateTypeChecker` API could be interested in
mapping from a shim location back to the original source location in the
template. One concrete example of this use-case is for the "find
references" action in the Language Service. This will return locations
in the TypeScript shim file, and we will then need to be able to map the
result back to the template.
PR Close#39715
Both `ReferenceSymbol` and `VariableSymbol` have two locations of
interest to an external consumer.
1. The location for the initializers of the local TCB variables allow consumers
to query the TypeScript Language Service for information about the initialized type of the variable.
2. The location of the local variable itself (i.e. `_t1`) allows
consumers to query the TypeScript LS for references to that variable
from within the template.
PR Close#39715
The 15.x versions of `yargs` relied upon a version of `y18n` that
has a SNYK vulnerability.
This commit updates the overall project, and therefore also the
`localize` and `compiler-cli` packages to use the latest version
of `yargs` that does not depend upon the vulnerable `y18n`
version.
The AIO project was already on the latest `yargs` version and so
does not need upgrading.
Fixes#39743
PR Close#39749
Currently `readConfiguration` relies on the file system to perform disk
utilities needed to read determine a project configuration file and read
it. This poses a challenge for the language service, which would like to
use `readConfiguration` to watch and read configurations dependent on
extended tsconfigs (#39134). Challenges are at least twofold:
1. To test this, the langauge service would need to provide to the
compiler a mock file system.
2. The language service uses file system utilities primarily through
TypeScript's `Project` abstraction. In general this should correspond
to the underlying file system, but it may differ and it is better to
go through one channel when possible.
This patch alleviates the concern by directly providing to the compiler
a "ParseConfigurationHost" with read-only "file system"-like utilties.
For the language service, this host is derived from the project owned by
the language service.
For more discussion see
https://docs.google.com/document/d/1TrbT-m7bqyYZICmZYHjnJ7NG9Vzt5Rd967h43Qx8jw0/edit?usp=sharing
PR Close#39619
ngtsc's testing infrastructure uses a mock version of @angular/core, which
allows tests to run without requiring the real version of core to be built.
This commit adds a mock version of @angular/common as well, as the language
service tests are written to test against common.
Only a handful of directives/pipes from common are currently supported.
PR Close#39594
ngtsc has a robust suite of testing utilities, designed for in-memory
testing of a TypeScript compiler. Previously these utilities lived in the
`test` directory for the compiler-cli package.
This commit moves those utilities to an `ngtsc/testing` package, enabling
them to be depended on separately and opening the door for using them from
the upcoming language server testing infrastructure.
As part of this refactoring, the `fake_core` package (a lightweight API
replacement for @angular/core) is expanded to include functionality needed
for Language Service test use cases.
PR Close#39594
Currently when we encounter an implicit method call (e.g. `{{ foo(1) }}`) and we manage to resolve
its receiver to something within the template, we assume that the method is on the receiver itself
so we generate a type checking code to reflect it. This assumption is true in most cases, but it
breaks down if the call is on an implicit receiver and the receiver itself is being invoked. E.g.
```
<div *ngFor="let fn of functions">{{ fn(1) }}</div>
```
These changes resolve the issue by generating a regular function call if the method call's receiver
is pointing to `$implicit`.
Fixes#39634.
PR Close#39686
In order to more accurately map from a node in the TCB to a template position,
we need to provide more span information in the TCB. These changes are necessary
for the Language Service to map from a TCB node back to a specific
locations in the template for actions like "find references" and
"refactor/rename". After the TS "find references" returns results,
including those in the TCB, we need to map specifically to the matching
key/value spans in the template rather than the entire source span.
This also has the benefit of producing diagnostics which align more
closely with what TypeScript produces.
The following example shows TS code and the diagnostic produced by an invalid assignment to a property:
```
let a: {age: number} = {} as any;
a.age = 'laksjdf';
^^^^^ <-- Type 'string' is not assignable to type 'number'.
```
A corollary to this in a template file would be [age]="'someString'". The diagnostic we currently produce for this is:
```
Type 'number' is not assignable to type 'string'.
1 <app-hello [greeting]="1"></app-hello>
~~~~~~~~~~~~~~
```
Notice that the underlined text includes the entire span.
If we included the keySpan for the assignment to the property,
this diagnostic underline would be more similar to the one produced by TypeScript;
that is, it would only underline “greeting”.
[design/discussion doc]
(https://docs.google.com/document/d/1FtaHdVL805wKe4E6FxVTnVHl38lICoHIjS2nThtRJ6I/edit?usp=sharing)
PR Close#39665
ngtsc will avoid emitting generated imports that would create an import
cycle in the user's program. The main way such imports can arise is when
a component would ordinarily reference its dependencies in its component
definition `directiveDefs` and `pipeDefs`. This requires adding imports,
which run the risk of creating a cycle.
When ngtsc detects that adding such an import would cause this to occur, it
instead falls back on a strategy called "remote scoping", where a side-
effectful call to `setComponentScope` in the component's NgModule file is
used to patch `directiveDefs` and `pipeDefs` onto the component. Since the
NgModule file already imports all of the component's dependencies (to
declare them in the NgModule), this approach does not risk adding a cycle.
It has several large downsides, however:
1. it breaks under `sideEffects: false` logic in bundlers including the CLI
2. it breaks tree-shaking for the given component and its dependencies
See this doc for further details: https://hackmd.io/Odw80D0pR6yfsOjg_7XCJg?view
In particular, the impact on tree-shaking was exacerbated by the naive logic
ngtsc used to employ here. When this feature was implemented, at the time of
generating the side-effectful `setComponentScope` call, the compiler did not
know which of the component's declared dependencies were actually used in
its template. This meant that unlike the generation of `directiveDefs` in
the component definition itself, `setComponentScope` calls had to list the
_entire_ compilation scope of the component's NgModule, including directives
and pipes which were not actually used in the template. This made the tree-
shaking impact much worse, since if the component's NgModule made use of any
shared NgModules (e.g. `CommonModule`), every declaration therein would
become un-treeshakable.
Today, ngtsc does have the information on which directives/pipes are
actually used in the template, but this was not being used during the remote
scoping operation. This commit modifies remote scoping to take advantage of
the extra context and only list used dependencies in `setComponentScope`
calls, which should ameliorate the tree-shaking impact somewhat.
PR Close#39662
This commit adds bazel rules to test whether linking the golden partial
files for test cases produces the same output as a full compile of the
test case would.
PR Close#39617
This commit contains the basic runner logic and a couple of sample test cases
for the "full compile" compliance tests, where source files are compiled
to full definitions and checked against expectations.
PR Close#39617
This commit renames the original `compliance` test directory to `compliance_old`.
Eventually this directory will be deleted once all the tests have been
migrated to the new test case based compliance tests.
PR Close#39617
The resource loader uses TypeScript's module resolution system to
determine at which locations it needs to look for a resource file. A
marker string is used to force the module resolution to fail, such that
all failed lookup locations can then be considered for actual resource
resolution. Any filesystem requests targeting files/directories that
contain the marker are known not to exist, so no filesystem request
needs to be done at all.
PR Close#39604
The type alias allows for this pattern to be more easily used in other
areas of the compiler code. The current usages of this pattern have been
updated to use the type alias.
PR Close#39604
TCB generation occasionally transforms binding expressions twice, which can
result in a `BindingPipe` operation being `resolve()`'d multiple times. When
the pipe does not exist, this caused multiple OOB diagnostics to be recorded
about the missing pipe.
This commit fixes the problem by making the OOB recorder track which pipe
expressions have had diagnostics produced already, and only producing them
once per expression.
PR Close#39517
With this change we remove code which was used to support both TypeScript 3.9 and TypeScript 4.0
This code is now no longer needed because G3 is on TypeScript 4.0
PR Close#39586
There is a compiler transform that downlevels Angular class decorators
to static properties so that metadata is available for JIT compilation.
The transform was supposed to ignore non-Angular decorators but it was
actually completely dropping decorators that did not conform to a very
specific syntactic shape (i.e. the decorator was a simple identifier, or
a namespaced identifier).
This commit ensures that all non-Angular decorators are kepts as-is
even if they are built using a syntax that the Angular compiler does not
understand.
Fixes#39574
PR Close#39577
Rather than re-reading component metadata that was already interpreted
by the Ivy compiler, the Language Service should instead use the
compiler APIs to get information it needs about the metadata.
PR Close#39476
For consistency with other generated code, the partial declaration
functions are renamed to use the `ɵɵ` prefix which indicates that it is
generated API.
This commit also removes the declaration from the public API golden
file, as it's not yet considered stable at this point. Once the linker
is finalized will these declaration function be included into the golden
file.
PR Close#39518
This commit implements partial code generation for directives, which
will be transformed by the linker plugin to fully AOT compiled code in
follow-up work.
PR Close#39518
In PR #38938 an additional Bazel target was introduced for the compliance
tests, as preparation to run the compliance tests in partial compilation
mode and then apply the linker transform. The linker plugin itself was
not available at the time but has since been implemented, so this commit
updates the prelink target of the compliance tests to apply the linker
transform using the Babel plugin.
Actually emitting partial compilations to be transformed will be done in
follow-up work.
PR Close#39518
This introduces `AstObject.toMap` as an alternative to `AstObject
.toLiteral`, and adds `AstValue.getSymbolName` to query the symbol name
of a value using the encapsulated AST host.
PR Close#39518
When a class with a custom decorator is transpiled to ES5, it looks something like this:
```
var SomeClass = (function() {
function SomeClass() {...};
var SomeClass_1 = __decorate([Decorator()], SomeClass);
SomeClass = SomeClass_1;
return SomeClass;
})();
```
The problem is that if the class also has an Angular decorator that refers to the class itself
(e.g. `{provide: someToken, useClass: SomeClass}`), the generated `setClassMetadata` code will
be emitted after the IIFE, but will still refer to the intermediate `SomeClass_1` variable from
inside the IIFE. This happens, because we generate the `setClassMetadata` call directly from
the source AST which contains identifiers that TS will rename when it emits the ES5 code.
These changes resolve the issue by looking through the metadata AST and cloning any `Identifier`
that is referring to the class. Since TS doesn't have references to the clone, it won't rename
it when transpiling to ES5.
Fixes#39509.
PR Close#39527
The variable declaration for a template context is only needed when it
is referenced from somewhere, so the TCB operation to generate the
declaration is marked as optional.
PR Close#39321
Currently expressions `$event.foo()` and `this.$event.foo()`, as well as `$any(foo)` and
`this.$any(foo)`, are treated as the same expression by the compiler, because `this` is considered
the same implicit receiver as when the receiver is omitted. This introduces the following issues:
1. Any time something called `$any` is used, it'll be stripped away, leaving only the first parameter.
2. If something called `$event` is used anywhere in a template, it'll be preserved as `$event`,
rather than being rewritten to `ctx.$event`, causing the value to undefined at runtime. This
applies to listener, property and text bindings.
These changes resolve the first issue and part of the second one by preserving anything that
is accessed through `this`, even if it's one of the "special" ones like `$any` or `$event`.
Furthermore, these changes only expose the `$event` global variable inside event listeners,
whereas previously it was available everywhere.
Fixes#30278.
PR Close#39323
The Language Service is not only interested in external resources, but
also inline styles and templates. By storing the expression of the
inline resources, we can more easily determine if a given position is
part of the inline template/style expression.
PR Close#39482
In addition to the template mapping that already existed, we want to also track the mapping for external
style files. We also store the `ts.Expression` in the registry so external tools can look up a resource
on a component by expression and avoid reading the value.
PR Close#39373
adds RuntimeError and code enum to improve debugging experience
refactor ExpressionChangedAfterItHasBeenCheckedError to code NG0100
refactor CyclicDependency to code NG0200
refactor No Provider to code NG0201
refactor MultipleComponentsMatch to code NG0300
refactor ExportNotFound to code NG0301
refactor PipeNotFound to code NG0302
refactor BindingNotKnown to code NG0303
refactor NotKnownElement to code NG0304
PR Close#39188
This reverts commit 561c0f81a0.
The original commit provided a quick escape from an already terminal
situation by killing the process if the PID in the lockfile was not
found in the list of processes running on the current machine.
But this broke use-cases where the node_modules was being shared between
multiple machines (or more commonly Docker containers on the same actual
machine).
Fixes#38875
PR Close#39435
Currently `i18n` attributes are treated the same no matter if they have data bindings or not. This
both generates more code since they have to go through the `ɵɵi18nAttributes` instruction and
prevents the translated attributes from being injected using the `@Attribute` decorator.
These changes makes it so that static translated attributes are treated in the same way as regular
static attributes and all other `i18n` attributes go through the old code path.
Fixes#38231.
PR Close#39408
This commit introduces two new methods to the TemplateTypeChecker, which
retrieve the directives and pipes that are "in scope" for a given component
template. The metadata returned by this API is minimal, but enough to power
autocompletion of selectors and attributes in templates.
PR Close#39278
This commit introduces caching of `Symbol`s produced by the template type-
checking infrastructure, in the same way that autocompletion results are
now cached.
PR Close#39278
This commit refactors the previously introduced `getGlobalCompletions()` API
for the template type-checker in a couple ways:
* The return type is adjusted to use a `Map` instead of an array, and
separate out the component context completion position. This allows for a
cleaner integration in the language service.
* A new `CompletionEngine` class is introduced which powers autocompletion
for a single component, and can cache completion results.
* The `CompletionEngine` for each component is itself cached on the
`TemplateTypeCheckerImpl` and is invalidated when the component template
is overridden or reset.
This refactoring simplifies the `TemplateTypeCheckerImpl` class by
extracting the autocompletion logic, enables caching for better performance,
and prepares for the introduction of other autocompletion APIs.
PR Close#39278
The compiler uses a `Reference` abstraction to refer to TS nodes
that it needs to refer to from other parts of the source. Such
references keep track of any identifiers that represent the referenced
node.
Prior to this commit, the compiler (and specifically `ReferenceEmitter`
classes) assumed that the reference identifiers are always free standing.
In other words a reference identifier would be an expression like
`FooDirective` in the expression `class FooDirective {}`.
But in UMD/CommonJS source, a reference can actually refer to an "exports"
declaration of the form `exports.FooDirective = ...`.
In such cases the `FooDirective` identifier is not free-standing
since it is part of a property access, so the `ReferenceEmitter`
should take this into account when emitting an expression that
refers to such a `Reference`.
This commit changes the `LocalIdentifierStrategy` reference emitter
so that if the `node` being referenced is not a declaration itself and
is in the current file, then it should be used directly, rather than
trying to use one of its identifiers.
PR Close#39346
Previously, UMD/CommonJS class inline declarations of the form:
```ts
exports.Foo = (function() { function Foo(); return Foo; })();
```
were capturing the whole IIFE as the implementation, rather than
the inner class (i.e. `function Foo() {}` in this case). This caused
the interpreter to break when it was trying to access such an export,
since it would try to evaluate the IIFE rather than treating it as a class
declaration.
PR Close#39346
group together similar error messages as part of error code efforts
ProviderNotFound & NodeInjector grouped into throwProviderNotFoundError
Cyclic dependency errors grouped into throwCyclicDependencyError
PR Close#39251
This commit adds the basic building blocks for linking partial declarations.
In particular it provides a generic `FileLinker` class that delegates to
a set of (not yet implemented) `PartialLinker` classes.
The Babel plugin makes use of this `FileLinker` providing concrete classes
for `AstHost` and `AstFactory` that work with Babel AST. It can be created
with the following code:
```ts
const plugin = createEs2015LinkerPlugin({ /* options */ });
```
PR Close#39116
Previously, inline exports of the form `exports.foo = <implementation>;` were
being interpreted (by the ngtsc `PartialInterpeter`) as `Reference` objects.
This is not what is desired since it prevents the value of the export
from being unpacked, such as when analyzing `NgModule` declarations:
```
exports.directives = [Directive1, Directive2];
@NgImport({declarations: [exports.directives]})
class AppModule {}
```
In this example the interpreter would think that `exports.directives`
was a reference rather than an array that needs to be unpacked.
This bug was picked up by the ngcc-validation repository. See
https://github.com/angular/ngcc-validation/pull/1990 and
https://circleci.com/gh/angular/ngcc-validation/17130
PR Close#39267
Some inline declarations are of the form:
```
exports.<name> = <implementation>;
```
In this case the declaration `node` is `exports.<name>`.
When interpreting such inline declarations we actually want
to visit the `implementation` expression rather than visiting
the declaration `node`.
This commit adds `implementation?: ts.Expression` to the
`InlineDeclaration` type and updates the interpreter to visit
these expressions as described above.
PR Close#39267
When ngcc is configured to run with the `--use-program-dependencies`
flag, as is the case in the CLI's asynchronous processing, it will scan
all source files in the program, starting from the program's root files
as configured in the tsconfig. Each individual root file could
potentially rescan files that had already been scanned for an earlier
root file, causing a severe performance penalty if the number of root
files is large. This would be the case if glob patterns are used in the
"include" specification of a tsconfig file.
This commit avoids the performance penalty by keeping track of the files
that have been scanned across all root files, such that no source file
is scanned multiple times.
Fixes#39240
PR Close#39254
Previously the `node.name` property was only checked to ensure it was
defined. But that meant that it was a `ts.BindingName`, which also includes
`ts.BindingPattern`, which we do not support. But these helper methods were
forcefully casting the value to `ts.Identifier.
Now we also check that the `node.name` is actually an `ts.Identifier`.
PR Close#38959
Previously directive "queries" that relied upon a namespaced type
```ts
queries: {
'mcontent': new core.ContentChild('test2'),
}
```
caused an error to be thrown. This is now supported.
PR Close#38959
Previously, any declarations that were defined "inline" were not
recognised by the `UmdReflectionHost`.
For example, the following syntax was completely unrecognized:
```ts
var Foo_1;
exports.Foo = Foo_1 = (function() {
function Foo() {}
return Foo;
})();
exports.Foo = Foo_1 = __decorate(SomeDecorator, Foo);
```
Such inline classes were ignored and not processed by ngcc.
This lack of processing led to failures in Ivy applications that relied
on UMD formats of libraries such as `syncfusion/ej2-angular-ui-components`.
Now all known inline UMD exports are recognized and processed accordingly.
Fixes#38947
PR Close#38959
Previously these tests were checking multiple specific expression
types. The new helper function is more general and will also support
`PropertyAccessExpression` nodes for `InlineDeclaration` types.
PR Close#38959
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.
It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.
So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.
To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.
PR Close#38959
This makes these tests more resilient to changes in the test code
structure. For example switching from
```
var SomeClass = <implementation>;
exports.SomeClass = SomeClass;
```
to
```
exports.SomeClass = <implementation>;
```
PR Close#38959
Previously `getDeclaration()` would only return the first node that matched
the name passed in and then assert the predicate on this single node.
It also only considered a subset of possible declaration types that we might
care about.
Now the function will parse the whole tree collecting an array of all the
nodes that match the name. It then filters this array based on the predicate
and only errors if the filtered array is empty.
This makes this function much more resilient to more esoteric code formats
such as UMD.
PR Close#38959
The new function does not try to restrict the kind of AST node that it
finds, leaving that to the caller. This will make it more resuable in the
UMD reflection host.
PR Close#38959
Sometimes UMD exports appear in the following form:
```
exports.MyClass = alias1 = alias2 = <<declaration>>
```
Previously the declaration of the export would have been captured
as `alias1 = alias2 = <<declaration>>`, which the `PartialInterpreter`
would have failed on, since it cannot handle assignments.
Now we skip over these aliases capturing only the `<<declaration>>`
expression.
Fixes#38947
PR Close#38959
UMD files export values by assigning them to an `exports` variable.
When evaluating expressions ngcc was failing to cope with expressions
like `exports.MyComponent`.
This commit fixes the `UmdReflectionHost.getDeclarationOfIdentifier()`
method to map the `exports` variable to the current source file.
PR Close#38959
The `SIMPLE_CLASS_FILE` contained a `ChildClass` that had an
internal aliases implementation and extended a `SuperClass` base
class. The call to `__extends` was using the wrong argument for
the child class.
PR Close#38959
This clarifies that this is specifically about statements of the form
`exports.<name> = <declaration>`, rather than a general export
statement such as `export class <ClassName> { ... }`.
PR Close#38959
There is no need to check that the `ref.node` is of any particular type
because immediately after this check the entry is tested to see if it passes
`isClassDeclarationReference()`.
The only difference is that the error that is reported is slightly different
in the case that it is a `ref` but not one of the TS node types.
Previously:
```
`Value at position ${idx} in the NgModule.${arrayName} of ${
className} is not a reference`
```
now
```
`Value at position ${idx} in the NgModule.${arrayName} of ${
className} is not a class`
```
Arguably the previous message was wrong, since this entry IS a reference
but is not a class.
PR Close#38959