Though we currently have the knowledge of where the `key` for an
event binding appears during parsing, we do not propagate this
information to the output AST. This means that once we produce the
template AST, we have no way of mapping a template position to the key
span alone. The best we can currently do is map back to the
`sourceSpan`. This presents problems downstream, specifically for the
language service, where we cannot provide correct information about a
position in a template because the AST is not granular enough.
This is essentially identical to the change from #38898, but for event
bindings rather than input bindings.
PR Close#39609
Similar to #39609 and #38898, though we currently have the knowledge of where the key for an
attribute appears during parsing, we do not propagate this
information to the output AST. This means that once we produce the
template AST, we have no way of mapping a template position to the key
span alone. The best we can currently do is map back to the
sourceSpan. This presents problems downstream, specifically for the
language service, where we cannot provide correct information about a
position in a template because the AST is not granular enough.
PR Close#39613
Rather than re-reading component metadata that was already interpreted
by the Ivy compiler, the Language Service should instead use the
compiler APIs to get information it needs about the metadata.
PR Close#39476
This commit takes the `HybridVisitor` in the language service and gives it
the ability to return not just a node but the template context in which it
appears. In the future, more context regarding where a node appears in the
template might become necessary (ex: the microsyntax container for binding
nodes), and this refactoring enables that.
In the process, `HybridVisitor` is renamed and the concept of a
`TemplateTarget` interface is introduced to contain the results of this
operation.
PR Close#39505
This commit refactors the QuickInfo abstraction shared between the VE and
Ivy services and used to implement hover tooltips (quick info), which was
extracted from the VE code in commit faa81dc. The new DisplayParts
abstraction is more general and can be used to extract information needed by
various LS functions (e.g. autocompletion).
This commit effectively reverts faa81dc, returning the original code to the
VE implementation as the Ivy code is now diverged.
PR Close#39505
Currently expressions `$event.foo()` and `this.$event.foo()`, as well as `$any(foo)` and
`this.$any(foo)`, are treated as the same expression by the compiler, because `this` is considered
the same implicit receiver as when the receiver is omitted. This introduces the following issues:
1. Any time something called `$any` is used, it'll be stripped away, leaving only the first parameter.
2. If something called `$event` is used anywhere in a template, it'll be preserved as `$event`,
rather than being rewritten to `ctx.$event`, causing the value to undefined at runtime. This
applies to listener, property and text bindings.
These changes resolve the first issue and part of the second one by preserving anything that
is accessed through `this`, even if it's one of the "special" ones like `$any` or `$event`.
Furthermore, these changes only expose the `$event` global variable inside event listeners,
whereas previously it was available everywhere.
Fixes#30278.
PR Close#39323
Currently render3's `parseTemplate` throws away the parsed AST and
returns an empty list of HTML nodes if HTML->R3 translation failed. This
is not preferrable in some contexts like that of a language service,
where we would like a well-formed AST even if it is has errors.
PR Close#39413
Constructing a project service is expensive. Making it a singleton could
speed up tests considerably.
On my MacBook Pro, test execution went from 24.4s to 14.5s (~40% improvement).
PR Close#39308
Test harness `setup()` is expensive, in the order of ~2.5 seconds.
We could speed up `fit()` tests considerably if `setup()` is wrapped
in `beforeAll()` to avoid running it unnecessarily.
PR Close#39305
This commit enables the Ivy Language Service to 'go to definition' of a
templateUrl or styleUrl, which would jump to the template/style file
itself.
PR Close#39202
These functions will be useful to the Ivy language service as well to
provide 'go to definition' functionality for template and style urls.
PR Close#39202
When an input name is part of the directive selector, it would be good to return the directive as well
when performing 'go to definition' or 'go to type definition'. As an example, this would allow
'go to type definition' for ngIf to take the user to the NgIf directive.
'Go to type definition' would otherwise return no results because the
input is a generic type. This would also be the case for all primitive
input types.
PR Close#39243
This commit fixes a bug in which a new Ivy Compiler is created every time
language service receives a new request. This is not needed if the
`ts.Program` has not changed.
A new class `CompilerFactory` is created to manage Compiler lifecycle and
keep track of template changes so that it knows when to override them.
With this change, we no longer need the method `getModifiedResourceFile()`
on the adapter. Instead, we call `overrideComponentTemplate` on the
template type checker.
This commit also changes the incremental build strategy from
`PatchedIncrementalBuildStrategy` to `TrackedIncrementalBuildStrategy`.
PR Close#39231
For directives/components, it would be generally more appropriate for
"go to type definition" to be the function which navigates to the class
definition. However, for a better user experience, we should do this
for "go to definition" as well.
PR Close#39228
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.
It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.
So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.
To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.
PR Close#38959
This PR enables `getSemanticDiagnostics()` to be called on external templates.
Several changes are needed to land this feature:
1. The adapter needs to implement two additional methods:
a. `readResource()`
Load the template from snapshot instead of reading from disk
b. `getModifiedResourceFiles()`
Inform the compiler that external templates have changed so that the
loader could invalidate its internal cache.
2. Create `ScriptInfo` for external templates in MockHost.
Prior to this, MockHost only track changes in TypeScript files. Now it
needs to create `ScriptInfo` for external templates as well.
For (1), in order to make sure we don't reload the template if it hasn't
changed, we need to keep track of its version. Since the complexity has
increased, the adapter is refactored into its own class.
PR Close#39065
Fixed a boolean logic error that prevented hybrid visitor from returning
undefined when a variable does not have value and cursor is not in the
key span.
PR Close#39061
Rather than having the Ivy implementation add the VE code to the deps
list, create a new common package that both Ivy and VE depend on. This
will make it more straightforward in the future to remove the VE code
completely.
PR Close#39098
It used to be the case that all microsyntax bindings share the same source
span, so the second bound attribute would overwrite the first.
This has been fixed in #39036, this case is added to prevent regression.
PR Close#39062
Create stubs for getTypeDefinitionAtPosition for both VE and Ivy Language Service implementations.
This will prevent failed requests when it is implemented on the vscode plugin side
PR Close#39050
In preparation for the Ivy Language service, add the same properties to AppComponent that appear in
TemplateReference so the inline template can be tested thoroughly.
PR Close#39033
Instead of doing all sorts of checks in the `visit()` method, move checks
that are specific to `BoundEvent` to the `visitBoundEvent()` method.
PR Close#38985
Make typing of DatePipe stricter to catch some misuses (such as passing
an Observable or an array) at compile time.
BREAKING CHANGE:
The signature of the `date` pipe now explicitly states which types are
accepted. This should only cause issues in corner cases, as any other
values would result in runtime exceptions.
PR Close#37447
`AsyncPipe.transform` will never return `undefined`, even when passed
`undefined` in input, in contrast with what was declared in the
overloads.
Additionally the "actual" method signature can be updated to match the
most generic case, since the implementation does not rely on wrappers
anymore.
BREAKING CHANGE:
The async pipe no longer claims to return `undefined` for an input that
was typed as `undefined`. Note that the code actually returned `null` on
`undefined` inputs. In the unlikely case you were relying on this,
please fix the typing of the consumers of the pipe output.
PR Close#37447
For the following example, the cursor is between `keySpan` and `valueSpan`
of the `BoundAttribute`.
```html
<test-cmp [foo]¦="bar"></test-cmp>
```
Our hybrid visitor will return `Element`in this case, which is the parent
node of the `BoundAttribute`.
This is because we only look at the `keySpan` and `valueSpan`, and not
the source span. The last element in the AST path is `Element`, so it gets
returned.
In this PR, I propose fixing this by adding a sentinel value `undefined`
to the AST path to signal that we've found a source span but the cursor is
neither in the key span nor the value span.
PR Close#38995
The keySpan in bound attributes provides more fine-grained location information and can be used
to disambiguate multiple bound attributes in a single microsyntax binding. Previously,
this case could not distinguish between the two different attributes because
the sourceSpans were identical and valueSpans would not match if the cursor
was located in a key.
PR Close#38955
In a microsyntax expressions, some attributes are not bound after
desugaring. For example,
```html
<div *ngFor="let item of items">
</div>
```
gets desugared to
```html
<ng-template ngFor let-items [ngForOf]="items">
</ngtemplate>
```
In this case, `ngFor` should be a literal attribute with no RHS value.
Therefore, its source span should be just the `keySpan` and not the
source span of the original template node.
This allows language service to precisely pinpoint different spans in a
microsyntax to provide accurate information.
PR Close#38766
The statements generated in the TCB are optimized for performance and producing diagnostics.
These optimizations can result in generating a TCB that does not have all the information
needed by the `TemplateTypeChecker` for retrieving `Symbol`s. For example, as an optimization,
the TCB will not generate variable declaration statements for directives that have no
references, inputs, or outputs. However, the `TemplateTypeChecker` always needs these
statements to be present in order to provide `ts.Symbol`s and `ts.Type`s for the directives.
This commit adds logic to the TCB generation to ensure the required
information is available in a form that the `TemplateTypeChecker` can
consume. It also adds an option to the `NgCompiler` that makes this
generation configurable.
PR Close#38618
In the test project there are no longer reference markers and location
markers, so there's no need to "pre-process" the source files to remove
them. This will make the Ivy tests cleaner and faster.
PR Close#38777
Previously this interface was mostly stored in compiler-cli, but it
contains some properties that would be useful for compiling the
"declare component" prelink code.
This commit moves some of the interface over to the compiler
package so that it can be referenced there without creating a
circular dependency between the compiler and compiler-cli.
PR Close#38594
Previously, the `startSourceSpan` property could be null
but in reality it is always well defined - except for a legacy
case in the old i18n extraction/merging code, where the
typings for source-spans are already being undermined.
Making this property non-null, simplifies code elsewhere
in the project.
PR Close#38581
In many testing scenarios, there is a common pattern:
1. Overwrite template (inline or external)
2. Find cursor position
3. Call one of language service APIs
4. Inspect spans in result
In order to faciliate this pattern, this commit refactors
`MockHost.overwrite()` and `MockHost.overwriteInlineTemplate()` to
allow a faux cursor symbol `¦` to be injected into the template, and
the methods will automatically remove it before updating the script snapshot.
Both methods will return the cursor position and the new text without
the cursor symbol.
This makes testing very convenient. Here's a typical example:
```ts
const {position, text} = mockHost.overwrite('template.html', `{{ ti¦tle }}`);
const quickInfo = ngLS.getQuickInfoAtPosition('template.html', position);
const {start, length} = quickInfo!.textSpan;
expect(text.substring(start, start + length)).toBe('title');
```
PR Close#38552
This commit introduces two visitors, one for Template AST and the other
for Expression AST to allow us to easily find the node that most closely
corresponds to a given cursor position.
This is crucial because many language service APIs take in a `position`
parameter, and the information returned depends on how well we can find
a good candidate node.
In View Engine implementation of language service, the search for the node
and the processing of information to return the result are strongly coupled.
This makes the code hard to understand and hard to debug because the stack
trace is often littered with layers of visitor calls.
With this new feature, we could test the "searching" part separately and
colocate all the logic (aka hacks) that's required to retrieve an accurate
span for a given node.
Right now, only the most "narrow" node is returned by the main exported
function `findNodeAtPosition`. If needed, we could expose the entire AST
path, or expose other methods to provide more context for a node.
Note that due to limitations in the template AST interface, there are
a few known cases where microsyntax spans are not recorded properly.
This will be dealt with in a follow-up PR.
PR Close#38540
Prior to this change, the unary + and - operators would be parsed as `x - 0`
and `0 - x` respectively. The runtime semantics of these expressions are
equivalent, however they may introduce inaccurate template type checking
errors as the literal type is lost, for example:
```ts
@Component({
template: `<button [disabled]="isAdjacent(-1)"></button>`
})
export class Example {
isAdjacent(direction: -1 | 1): boolean { return false; }
}
```
would incorrectly report a type-check error:
> error TS2345: Argument of type 'number' is not assignable to parameter
of type '-1 | 1'.
Additionally, the translated expression for the unary + operator would be
considered as arithmetic expression with an incompatible left-hand side:
> error TS2362: The left-hand side of an arithmetic operation must be of
type 'any', 'number', 'bigint' or an enum type.
To resolve this issues, the implicit transformation should be avoided.
This commit adds a new unary AST node to represent these expressions,
allowing for more accurate type-checking.
Fixes#20845Fixes#36178
PR Close#37918
Now that Ivy compiler has a proper `TemplateTypeChecker` interface
(see https://github.com/angular/angular/pull/38105) we no longer need to
keep the temporary compiler implementation.
The temporary compiler was created to enable testing infrastructure to
be developed for the Ivy language service.
This commit removes the whole `ivy/compiler` directory and moves two
functions `createTypeCheckingProgramStrategy` and
`getOrCreateTypeCheckScriptInfo` to the `LanguageService` class.
Also re-enable the Ivy LS test since it's no longer blocking development.
PR Close#38310
This commit removes compiler instantiation at startup.
This is because the constructor is invoked during the plugin loading phase,
in which the project has not been completely loaded.
Retrieving `ts.Program` at startup will trigger an `updateGraph` operation,
which could only be called after the Project has loaded completely.
Without this change, the Ivy LS cannot be loaded as a tsserver plugin.
Note that the whole `Compiler` class is temporary, so changes made there are
only for development. Once we have proper integration with ngtsc the
`Compiler` class would be removed.
PR Close#38120
The template type-checking engine relies on the abstraction interface
`TypeCheckingProgramStrategy` to create updated `ts.Program`s for
template type-checking. The basic API is that the type-checking engine
requests changes to certain files in the program, and the strategy provides
an updated `ts.Program`.
Typically, such changes are made to 'ngtypecheck' shim files, but certain
conditions can cause template type-checking to require "inline" operations,
which change user .ts files instead. The strategy used by 'ngc' (the
`ReusedProgramStrategy`) supports these kinds of updates, but other clients
such as the language service might not always support modifying user files.
To accommodate this, the `TypeCheckingProgramStrategy` interface was
modified to include a `supportsInlineOperations` flag. If an implementation
specifies `false` for inline support, the template type-checking system will
return diagnostics on components which would otherwise require inline
operations.
Closes#38059
PR Close#38105
This commit significantly refactors the 'typecheck' package to introduce a
new abstraction, the `TemplateTypeChecker`. To achieve this:
* a 'typecheck:api' package is introduced, containing common interfaces that
consumers of the template type-checking infrastructure can depend on
without incurring a dependency on the template type-checking machinery as
a whole.
* interfaces for `TemplateTypeChecker` and `TypeCheckContext` are introduced
which contain the abstract operations supported by the implementation
classes `TemplateTypeCheckerImpl` and `TypeCheckContextImpl` respectively.
* the `TemplateTypeChecker` interface supports diagnostics on a whole
program basis to start with, but the implementation is purposefully
designed to support incremental diagnostics at a per-file or per-component
level.
* `TemplateTypeChecker` supports direct access to the type check block of a
component.
* the testing utility is refactored to be a lot more useful, and new tests
are added for the new abstraction.
PR Close#38105
Previously in the template type-checking engine, it was assumed that every
input file would have an associated type-checking shim. The type check block
code for all components in the input file would be generated into this shim.
This is fine for whole-program type checking operations, but to support the
language service's requirements for low latency, it would be ideal to be
able to check a single component in isolation, especially if the component
is declared along with many others in a single file.
This commit removes the assumption that the file/shim mapping is 1:1, and
introduces the concept of component-to-shim mapping. Any
`TypeCheckingProgramStrategy` must provide such a mapping.
To achieve this:
* type checking record information is now split into file-level data as
well as per-shim data.
* components are now assigned a stable `TemplateId` which is unique to the
file in which they're declared.
PR Close#38105
This commit adds a script to build @angular/language-service
locally so that it can be consumed by the Angular extension for
local development.
PR Close#38103
Currently the Ivy language service bundle is [10MB](
https://unpkg.com/browse/@angular/language-service@10.0.4/bundles/) because we
accidentally included typescript in the bundle.
With this change, the bundle size goes down to 1.6MB, which is even smaller
than the View Engine bundle (1.8MB).
```bash
$ yarn bazel build //packages/language-service/bundles:ivy
$ ls -lh dist/bin/packages/language-service/bundles/ivy.umd.js
1.6M Jul 15 15:49 dist/bin/packages/language-service/bundles/ivy.umd.js
```
PR Close#38088
`ls_rollup_bundle` is no longer needed since we could invoke `ng_rollup_bundle`
directly.
Background: language service runs rollup to produce a single file to reduce
startup time in the editor. However, due to the need to load dynamic versions
of typescript at runtime (think the case where users can change typescript
version in their editor), we hack the "banner" to export a CommonJS default function,
so that we could dynamically load the typescript module provided at runtime via AMD
and use it throughout the implementation.
PR Close#38086