Previously, some of the *Def symbols were not exported or were exported
as public API. This commit ensures every definition type is in the
private export namespace.
PR Close#24862
Within an @NgModule it's common to include in the imports a call to
a ModuleWithProviders function, for example RouterModule.forRoot().
The old ngc compiler was able to handle this pattern because it had
global knowledge of metadata of not only the input compilation unit
but also all dependencies.
The ngtsc compiler for Ivy doesn't have this knowledge, so the
pattern of ModuleWithProviders functions is more difficult. ngtsc
must be able to determine which module is imported via the function
in order to expand the selector scope and properly tree-shake
directives and pipes.
This commit implements a solution to this problem, by adding a type
parameter to ModuleWithProviders through which the actual module
type can be passed between compilation units.
The provider side isn't a problem because the imports are always
copied directly to the ngInjectorDef.
PR Close#24862
InjectorDef is parameterized on the type of the injector
configuration class (e.g. the @NgModule decorated type). Previously
this parameter was not included when generating .d.ts files that
contained InjectorDefs.
PR Close#24738
This will allow RouterTestingModule to better support lazy loading of modules
when using summaries, since it can detect whether a module is already loaded
if it can access the id.
PR Close#24258
Allows to write:
const fixture = TestBed
.overridePipe(DisplayNamePipe, { set: { pure: false } })
.createComponent(MenuComponent);
when you only want to set the `pure` metadata,
instead of currently:
const fixture = TestBed
.overridePipe(DisplayNamePipe, { set: { name: 'displayName', pure: false } })
.createComponent(MenuComponent);
which forces you to redefine the name of the pipe even if it is useless.
Fixes#24102
PR Close#24103
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an opaque token.
For this reson why declare the return value of `defineInjectable` as `never`.
PR Close#23383
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an `OpaqueToken`.
By prefixing the type with `ɵ` we are communicating the the outside world that
the value is not public API and is subject to change without backward compatibility.
PR Close#23371
- Remove default injection value from `inject` / `directiveInject` since
it is not possible to set using annotations.
- Module `Injector` is stored on `LView` instead of `LInjector` data
structure because it can change only at `LView` level. (More efficient)
- Add `ngInjectableDef` to `IterableDiffers` so that existing tests can
pass as well as enable `IterableDiffers` to be injectable without
`Injector`
PR Close#23345
This change changes:
- compiler uses `directiveInject` instead of `inject` for `Directive`s
- unifies the flags in `di` as well as `render3`
- changes the signature of `directiveInject` to match `inject` In prep for #23330
- compiler now generates flags for injection.
Compiler portion of #23342
Prep for #23330
PR Close#23345
This adds compilation of @NgModule providers and imports into
ngInjectorDef statements in generated code. All @NgModule annotations
will be compiled and the @NgModule decorators removed from the
resultant js output.
All @Injectables will also be compiled in Ivy mode, and the decorator
removed.
PR Close#22458
BREAKING CHANGE:
The `<template>` tag was deprecated in Angular v4 to avoid collisions (i.e. when
using Web Components).
This commit removes support for `<template>`. `<ng-template>` should be used
instead.
BEFORE:
<!-- html template -->
<template>some template content</template>
# tsconfig.json
{
# ...
"angularCompilerOptions": {
# ...
# This option is no more supported and will have no effect
"enableLegacyTemplate": [true|false]
}
}
AFTER:
<!-- html template -->
<ng-template>some template content</ng-template>
PR Close#22783
This patch removes the deprecated support for animation
symbol imports from @angular/core.
BREAKING CHANGE: it is no longer possible to import
animation-related functions from @angular/core. All
animation symbols must now be imported from @angular/animations.
PR Close#22692
Allow passing an optional timeout to Testability's whenStable(). If
specified, if Angular is not stable before the timeout is hit, the
done callback will be invoked with a list of pending macrotasks.
Also, allows an optional update callback, which will be invoked whenever
the set of pending macrotasks changes. If this callback returns true,
the timeout will be cancelled and the done callback will not be invoked.
If the optional parameters are not passed, whenStable() will work
as it did before, whether or not the task tracking zone spec is
available.
This change also migrates the Testability unit tests off the deprecated
AsyncTestCompleter.
PR Close#16863
Rename @Injectable({scope -> providedIn}).
Instead of {providedIn: APP_ROOT_SCOPE}, accept {providedIn: 'root'}.
Also, {providedIn: null} implies the injectable should not be added
to any scope.
PR Close#22655
inject() supports the ngInjectableDef-based configuration of the injector
(otherwise known as tree-shakeable services). It was missing from the
exported API of @angular/core, this PR adds it.
The test added here is correct in theory, but may pass accidentally due
to the decorator side-effect replacing the inject() call at runtime. An
upcoming compiler PR will strip reified decorators from the output
entirely.
Fixes#22388
PR Close#22389
InjectionToken can be created with an ngInjectableDef, and previously
this allowed the full expressiveness of @Injectable. However, this
requires a runtime reflection system in order to generate factories
from expressed provider declarations.
Instead, this change requires scoped InjectionTokens to provide the
factory directly (likely using inject() for the arguments), bypassing
the need for a reflection system.
Fixes#22205
PR Close#22207
@Injectable() supports a scope parameter which specifies the target module.
However, it's still difficult to specify that a particular service belongs
in the root injector. A developer attempting to ensure that must either
also provide a module intended for placement in the root injector or target
a module known to already be in the root injector (e.g. BrowserModule).
Both of these strategies are cumbersome and brittle.
Instead, this commit adds a token APP_ROOT_SCOPE which provides a
straightforward way of targeting the root injector directly, without
requiring special knowledge of modules within it.
PR Close#22185
This commit bundles 3 important changes, with the goal of enabling tree-shaking
of services which are never injected. Ordinarily, this tree-shaking is prevented
by the existence of a hard dependency on the service by the module in which it
is declared.
Firstly, @Injectable() is modified to accept a 'scope' parameter, which points
to an @NgModule(). This reverses the dependency edge, permitting the module to
not depend on the service which it "provides".
Secondly, the runtime is modified to understand the new relationship created
above. When a module receives a request to inject a token, and cannot find that
token in its list of providers, it will then look at the token for a special
ngInjectableDef field which indicates which module the token is scoped to. If
that module happens to be in the injector, it will behave as if the token
itself was in the injector to begin with.
Thirdly, the compiler is modified to read the @Injectable() metadata and to
generate the special ngInjectableDef field as part of TS compilation, using the
PartialModules system.
Additionally, this commit adds several unit and integration tests of various
flavors to test this change.
PR Close#22005
- Improve `WrappedValue` by adding `unwrap` symetrical to `wrap`.
- remove dead code - `ValueUnwrapper`
The property `wrapped` is an implementation details and should never be accessed
directly - use `unwrap(wrappedValue)`. Will change to protected in Angular 7.
PR Close#20997
This allows to overwrite templates for JIT and AOT components alike.
In contrast to `TestBed.overrideTemplate`, the template is compiled
in the context of the testing module, allowing to use other testing
directives.
Closes#19815
This allows use to fix `TestBed.overrideProvider` to keep imported `NgModule`s eager,
while allowing our users to still keep the old semantics until they have fixed their
tests.
PR Close#19558
The private classes `ApplicationRef_`, `PlatformRef_`, `JSONPConnection_`, `JSONPBackend_`, `ClientMessageBrokerFactory_`, `ServiceMessageBroker_`, `ClientMessageBroker_` and `ServiceMessageBrokerFactory_` have been removed and merged into their public equivalents.
The size of the minified umd bundles have been slightly decreased:
| package | before | after |
| -------------------|------------|------------|
| core | 217.791 kb | 217.144 kb |
| http | 33.260 kb | 32.838 kb |
| platform-webworker | 56.015 kb | 54.933 kb |
PR Close#19143
Add testability hook to downgraded component so that protractor can wait for asynchronous call to complete.
Add unregisterApplication() and unregisterAllApplications() to testability registry for cleaning up testability and unit test.