This commit builds out enough of the JIT compiler to render
//packages/core/test/bundling/todo, and allows the tests to run in
JIT mode.
To play with the app, run:
bazel run --define=compile=jit //packages/core/test/bundling/todo:prodserver
PR Close#24138
Bazel has a restriction that a single output (eg. a compiled version of
//packages/common) can only be produced by a single rule. This precludes
the Angular repo from having multiple rules that build the same code. And
the complexity of having a single rule produce multiple outputs (eg. an
ngc-compiled version of //packages/common and an Ivy-enabled version) is
too high.
Additionally, the Angular repo has lots of existing tests which could be
executed as-is under Ivy. Such testing is very valuable, and it would be
nice to share not only the code, but the dependency graph / build config
as well.
Thus, this change introduces a --define flag 'compile' with three potential
values. When --define=compile=X is set, the entire build system runs in a
particular mode - the behavior of all existing targets is controlled by
the flag. This allows us to reuse our entire build structure for testing
in a variety of different manners. The flag has three possible settings:
* legacy (the default): the traditional View Engine (ngc) build
* local: runs the prototype ngtsc compiler, which does not rely on global
analysis
* jit: runs ngtsc in a mode which executes tsickle, but excludes the
Angular related transforms, which approximates the behavior of plain
tsc. This allows the main packages such as common to be tested with
the JIT compiler.
Additionally, the ivy_ng_module() rule still exists and runs ngc in a mode
where Ivy-compiled output is produced from global analysis information, as
a stopgap while ngtsc is being developed.
PR Close#24056
Short-circuitable expressions (using ternary & binary operators) could not use
the regular binding mechanism as it relies on the bindings being checked every
single time - the index is incremented as part of checking the bindings.
Then for pure function kind of bindings we use a different mechanism with a
fixed index. As such short circuiting a binding check does not mess with the
expected binding index.
Note that all pure function bindings are handled the same wether or not they
actually are short-circuitable. This allows to keep the compiler and compiled
code simple - and there is no runtime perf cost anyway.
PR Close#24039
This commit adds a mechanism by which the @angular/core annotations
for @Component, @Injectable, and @NgModule become decorators which,
when executed at runtime, trigger just-in-time compilation of their
associated types. The activation of these decorators is configured
by the ivy_switch mechanism, ensuring that the Ivy JIT engine does
not get included in Angular bundles unless specifically requested.
PR Close#23833
Previously, the compileComponent() and compileDirective() APIs still required
the output of global analysis, even though they only read local information
from that output.
With this refactor, compileComponent() and compileDirective() now define
their inputs explicitly, with the new interfaces R3ComponentMetadata and
R3DirectiveMetadata. compileComponentGlobal() and compileDirectiveGlobal()
are introduced and convert from global analysis output into the new metadata
format.
This refactor also splits out the view compiler into separate files as
r3_view_compiler_local.ts was getting unwieldy.
Finally, this refactor also splits out generation of DI factory functions
into a separate r3_factory utility as the logic is utilized between different
compilers.
PR Close#23545
This commit adds a new compiler pipeline that isn't dependent on global
analysis, referred to as 'ngtsc'. This new compiler is accessed by
running ngc with "enableIvy" set to "ngtsc". It reuses the same initialization
logic but creates a new implementation of Program which does not perform the
global-level analysis that AngularCompilerProgram does. It will be the
foundation for the production Ivy compiler.
PR Close#23455
A long time ago Angular used to support both those attribute notations:
- `*attr='binding'`
- `template=`attr: binding`
Because the last notation has been dropped we can refactor the binding parsing.
Source maps will benefit from that as no `attr:` prefix is added artificialy any
more.
PR Close#23460
In certain cases seen in production, simplify() can returned
undefined when simplifying decorator metadata. This has proven tricky
to reproduce in an isolated test, but the fix is simple and low-risk:
don't attempt to spread an undefined set of annotations in the first
place.
PR Close#23349
- Remove default injection value from `inject` / `directiveInject` since
it is not possible to set using annotations.
- Module `Injector` is stored on `LView` instead of `LInjector` data
structure because it can change only at `LView` level. (More efficient)
- Add `ngInjectableDef` to `IterableDiffers` so that existing tests can
pass as well as enable `IterableDiffers` to be injectable without
`Injector`
PR Close#23345
This change changes:
- compiler uses `directiveInject` instead of `inject` for `Directive`s
- unifies the flags in `di` as well as `render3`
- changes the signature of `directiveInject` to match `inject` In prep for #23330
- compiler now generates flags for injection.
Compiler portion of #23342
Prep for #23330
PR Close#23345
The 'stringify' function prints an object as [Object object] which
is not very helpful in many cases, especially in a diagnostics
message. This commit changes the behavior to pretty print an object.
PR Close#22689
When compiling templates the compiler would often bind to
closest context rather than the component context.
The only time one should be binding to the cont component is
in explicit cases where the inner template declares local variable.
PR Close#23168
Given
```
<div *ngFor=”…” (click)=“doSomething()”>
```
Before `doSomething` would execute on the inner template context, which
is incorrect. The correct behavior is to execute on the top level context
of the component.
PR Close#23168
Computing the value of loadChildren does not work externally, as the CLI
needs to be able to detect the paths referenced to properly set up
codesplitting. However, internally, different approaches to codesplitting
require hashed module IDs, and the computation of those hashes involves
something like:
{path: '...', loadChildren: hashFn('module')}
ngc should lower loadChildren into an exported constant in that case.
This will never break externally, because loadChildren is always a
string externally, and a string won't get lowered.
PR Close#23088
Remove `containerRefreshStart` and `containerRefreshEnd` instruction
from the output.
Generate directives as a list in `componentDef` rather than inline into
instructions. This is consistent in making selector resolution runtime
so that translation of templates can follow locality.
PR Close#22921
In Ivy mode we rewrite references to Injector to INJECTOR in ngInjectableDef, to fix tree-shaking.
This changes the rewrite to happen always, even in non-Ivy mode, and makes Angular understand
INJECTOR across the board at runtime.
PR Close#23008
This lets projects like Material change ng_package "bundle index" files to non-conflicting paths
Currently packages like @angular/core ship with the generated metadata
in a path like 'core.js' which overwrites one of the inputs.
Angular material puts the generated file in a path like 'index.js'
Either way these files generated by ng_module rules have the potential
to collide with inputs given by the user, which results in an error.
Instead, give users the freedom to choose a different non-conflicting name.
Also this refactors the ng_package rule, removing the redundant
secondary_entry_points attribute.
Instead, we assume that any ng_module in the deps with a module_name
attribute is a secondary entry point.
PR Close#22814
This adds compilation of @NgModule providers and imports into
ngInjectorDef statements in generated code. All @NgModule annotations
will be compiled and the @NgModule decorators removed from the
resultant js output.
All @Injectables will also be compiled in Ivy mode, and the decorator
removed.
PR Close#22458
This flag is picked up by webpack v4 and used for more agressive optimizations.
Our code is already side-effect free, because that's what we needed for build-optimizer to work.
PR Close#22785
BREAKING CHANGE:
The `<template>` tag was deprecated in Angular v4 to avoid collisions (i.e. when
using Web Components).
This commit removes support for `<template>`. `<ng-template>` should be used
instead.
BEFORE:
<!-- html template -->
<template>some template content</template>
# tsconfig.json
{
# ...
"angularCompilerOptions": {
# ...
# This option is no more supported and will have no effect
"enableLegacyTemplate": [true|false]
}
}
AFTER:
<!-- html template -->
<ng-template>some template content</ng-template>
PR Close#22783
Angular Package Format v6 stops bundling files in the esm5 and esm2015
directories, now that Webpack 4 can tree-shake per-file.
Adds some missing files like package.json to make packages closer to
what we publish today.
Refactor ng_package to be a type of npm_package and re-use the packaging
action from that rule.
PR Close#22782
Rename:
- `elementClass` (short: `k`) => `elementClassNamed` (short: `kn`)
- `elementStyle` (short: `s`) => `elementStyleNamed` (short: `sn`)
Currently `[class.name]` is `elementClass(0, ‘name’, value)`. We would
like to introduce new binding `[class]` which needs a new instruction
ideally `elementClass(0, value)`. Doing the rename creates space
to create such an instruction in subsequent change.
PR Close#22719
Rename @Injectable({scope -> providedIn}).
Instead of {providedIn: APP_ROOT_SCOPE}, accept {providedIn: 'root'}.
Also, {providedIn: null} implies the injectable should not be added
to any scope.
PR Close#22655
We now create npm packages to cover all the public api assertions in tools/public_api_guard.
We no longer depend on ts-api-guardian from npm - it is now stale since the repository was archived.
There is no longer a gulp task to enforce or accept the public API, this is in CircleCI as part of running all bazel test targets.
PR Close#22639
Produces back-patch as described in the #22235 and referenced in #22480.
This just contains the compiler implementations and the corresponding unit
tests. Connecting the dots as described in #22480 will be in a follow on
change.
PR Close#22506
BREAKING CHANGE: after this change, npm and yarn will issue incompatible peerDependencies warning
We don't expect this to actually break an application, but the application/library package.json
will need to be updated to provide tslib 1.9.0 or higher.
PR Close#22667
Previously the injectable compiler assumed all tree-shakeable injectables
would have dependencies that were injectables or InjectionTokens. However
old code still uses string tokens (e.g. NgUpgrade and '$injector'). Using
such tokens would cause the injectable compiler to crash.
Now, the injectable compiler can properly generate a dependency on such a
string token.
PR Close#22376
"ng update" supports having multiple packages as part of a group which should be updated together, meaning that e.g. calling "ng update @angular/core" would be equivalent to updating all packages of the group (that are part of the package.json already).
In order to support the grouping feature, the package.json of the version the user is updating to needs to include an "ng-update" key that points to this metadata.
The entire specification for the update workflow can be found here: 2e8b12a4ef/docs/specifications/update.md
PR Close#22482
InjectionToken can be created with an ngInjectableDef, and previously
this allowed the full expressiveness of @Injectable. However, this
requires a runtime reflection system in order to generate factories
from expressed provider declarations.
Instead, this change requires scoped InjectionTokens to provide the
factory directly (likely using inject() for the arguments), bypassing
the need for a reflection system.
Fixes#22205
PR Close#22207
This commit bundles 3 important changes, with the goal of enabling tree-shaking
of services which are never injected. Ordinarily, this tree-shaking is prevented
by the existence of a hard dependency on the service by the module in which it
is declared.
Firstly, @Injectable() is modified to accept a 'scope' parameter, which points
to an @NgModule(). This reverses the dependency edge, permitting the module to
not depend on the service which it "provides".
Secondly, the runtime is modified to understand the new relationship created
above. When a module receives a request to inject a token, and cannot find that
token in its list of providers, it will then look at the token for a special
ngInjectableDef field which indicates which module the token is scoped to. If
that module happens to be in the injector, it will behave as if the token
itself was in the injector to begin with.
Thirdly, the compiler is modified to read the @Injectable() metadata and to
generate the special ngInjectableDef field as part of TS compilation, using the
PartialModules system.
Additionally, this commit adds several unit and integration tests of various
flavors to test this change.
PR Close#22005
All of the providers in a module get compiled into a module definition in the
factory file. Some of these providers are for the actual module types, as those
are available for injection in Angular. For tree-shakeable tokens, the runtime
needs to be able to distinguish which modules are present in an injector.
This change adds a NodeFlag which tags those module providers for later
identification.
PR Close#22005
Modifies validation syntax to generate back references to ensure
that identifiers are used consistently.
Introduced … to allow validating constant definition and usage.
PR Close#21877
Currently, `shimCssText` only keep `/*# sourceMappingUrl ... */` comments and strip `/*# sourceURL ... */` comments. So, Chrome can't find the source maps for component style(that's created in new `style` tags)
PR Close#16088
Folding errors passed calls prevented the static reflector from
begin able to ignore errors in annotations it doesn't know as
the call to the unknown annotation was elided from the metadata.
Fixes: #21273
PR Close#21708
The "enableIvy" compiler option is the initial implementation
of the Render3 (or Ivy) code generation. This commit enables
generation generating "Hello, World" (example in the test)
but not much else. It is currenly only useful for internal Ivy
testing as Ivy is in development.
PR Close#21427
Cache reference resolution for external references as finding
the declaration of a symbol is expensive and does not change
for a program once created.
This resolves a signficant performance regression in the langauge
service.
PR Close#21359
This helps ensure we use the same tsconfig.json file for all compilations.
Next steps are to make it the same tsconfig.json file used by the editor
PR Close#20964
- Add tests target for `test`, `test_node_only` and `test_web` in `core` package.
- Created a `_testing_init` pseudo package where bootstrap code for tests is kept.
- Moved `source_map_util` from `test` to `testing` so to prevent circular dependency.
- Removed `visibility:public` for testing `BUILD` packages.
PR Close#21053
Allows a directive to use the expression passed directly to a property
as a guard instead of filtering the type through a type expression.
This more accurately matches the intent of the ngIf usage of its template
enabling better type inference.
Moved NgIf to using this type of guard instead of a function guard.
Closes: #20967
Due to an overly agressive assert the compiler would generate
an internal error when referencing an enum declared in
namspace.
Fixes#18170
PR Close#20947
`$any()` can now be used in a binding expression to disable type
checking for the rest of the expression. This similar to `as any` in
TypeScript and allows expression that work at runtime but do not
type-check.
PR Close#20876
Structural directives can now specify a type guard that describes
what types can be inferred for an input expression inside the
directive's template.
NgIf was modified to declare an input guard on ngIf.
After this change, `fullTemplateTypeCheck` will infer that
usage of `ngIf` expression inside it's template is truthy.
For example, if a component has a property `person?: Person`
and a template of `<div *ngIf="person"> {{person.name}} </div>`
the compiler will no longer report that `person` might be null or
undefined.
The template compiler will generate code similar to,
```
if (NgIf.ngIfTypeGuard(instance.person)) {
instance.person.name
}
```
to validate the template's use of the interpolation expression.
Calling the type guard in this fashion allows TypeScript to infer
that `person` is non-null.
Fixes: #19756?
PR Close#20702
Add enough BUILD files to make it possible to
`bazel build packages/core/test`
Also re-format BUILD.bazel files with Buildifier.
Add a CI lint check that they stay formatted.
PR Close#20768
The errors produced when error were encountered while interpreting the
content of a directive was often incomprehencible. With this change
these kind of error messages should be easier to understand and diagnose.
PR Close#20459
The type-check block generated with `"fullTemplateTypeCheck"` was
invalid if the it contained a template ref as would be generated
using the `else` micro-syntax of `NgIf`.
Fixes: #19485
PR Close#20463
`cmp:host {}` and `cmp:host some-other-selector {}` were not handled
consistently.
Note those should not match anything but are made equivalent to respectively
`:host(cmp)` and `:host(cmp) some-other-selector` to avoid breaking legacy apps.