Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).
**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.
This is part of the larger refactor for FW-1468.
PR Close#31953
In ngc is was valid to set the "flatModuleOutFile" option to "null". This is sometimes
necessary if a tsconfig extends from another one but the "fatModuleOutFile" option
needs to be unset (note that "undefined" does not exist as value in JSON)
Now if ngtsc is used to compile the project, ngtsc will fail with an error because it
tries to do string manipulation on the "flatModuleOutFile". This happens because
ngtsc only skips flat module indices if the option is set to "undefined".
Since this is not compatible with what was supported in ngc and such exceptions
should be avoided, the flat module check is now aligned with ngc.
```
TypeError: Cannot read property 'replace' of null
at Object.normalizeSeparators (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/util/src/path.js:35:21)
at new NgtscProgram (/home/circleci/project/node_modules/@angular/compiler-cli/src/ngtsc/program.js:126:52)
```
Additionally setting the `flatModuleOutFile` option to an empty string
currently results in unexpected behavior. No errors is thrown, but the
flat module index file will be `.ts` (no file name; just extension).
This is now also fixed by treating an empty string similarly to
`null`.
PR Close#32235
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.
With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.
PR Close#32171
Historically, the Angular Compiler has produced both native TypeScript
diagnostics (called ts.Diagnostics) and its own internal Diagnostic format
(called an api.Diagnostic). This was done because TypeScript ts.Diagnostics
cannot be produced for files not in the ts.Program, and template type-
checking diagnostics are naturally produced for external .html template
files.
This design isn't optimal for several reasons:
1) Downstream tooling (such as the CLI) must support multiple formats of
diagnostics, adding to the maintenance burden.
2) ts.Diagnostics have gotten a lot better in recent releases, with support
for suggested changes, highlighting of the code in question, etc. None of
these changes have been of any benefit for api.Diagnostics, which have
continued to be reported in a very primitive fashion.
3) A future plugin model will not support anything but ts.Diagnostics, so
generating api.Diagnostics is a blocker for ngtsc-as-a-plugin.
4) The split complicates both the typings and the testing of ngtsc.
To fix this issue, this commit changes template type-checking to produce
ts.Diagnostics instead. Instead of reporting a special kind of diagnostic
for external template files, errors in a template are always reported in
a ts.Diagnostic that highlights the portion of the template which contains
the error. When this template text is distinct from the source .ts file
(for example, when the template is parsed from an external resource file),
additional contextual information links the error back to the originating
component.
A template error can thus be reported in 3 separate ways, depending on how
the template was configured:
1) For inline template strings which can be directly mapped to offsets in
the TS code, ts.Diagnostics point to real ranges in the source.
This is the case if an inline template is used with a string literal or a
"no-substitution" string. For example:
```typescript
@Component({..., template: `
<p>Bar: {{baz}}</p>
`})
export class TestCmp {
bar: string;
}
```
The above template contains an error (no 'baz' property of `TestCmp`). The
error produced by TS will look like:
```
<p>Bar: {{baz}}</p>
~~~
test.ts:2:11 - error TS2339: Property 'baz' does not exist on type 'TestCmp'. Did you mean 'bar'?
```
2) For template strings which cannot be directly mapped to offsets in the
TS code, a logical offset into the template string will be included in
the error message. For example:
```typescript
const SOME_TEMPLATE = '<p>Bar: {{baz}}</p>';
@Component({..., template: SOME_TEMPLATE})
export class TestCmp {
bar: string;
}
```
Because the template is a reference to another variable and is not an
inline string constant, the compiler will not be able to use "absolute"
positions when parsing the template. As a result, errors will report logical
offsets into the template string:
```
<p>Bar: {{baz}}</p>
~~~
test.ts (TestCmp template):2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.
test.ts:3:28
@Component({..., template: TEMPLATE})
~~~~~~~~
Error occurs in the template of component TestCmp.
```
This error message uses logical offsets into the template string, and also
gives a reference to the `TEMPLATE` expression from which the template was
parsed. This helps in locating the component which contains the error.
3) For external templates (templateUrl), the error message is delivered
within the HTML template file (testcmp.html) instead, and additional
information contextualizes the error on the templateUrl expression from
which the template file was determined:
```
<p>Bar: {{baz}}</p>
~~~
testcmp.html:2:15 - error TS2339: Property 'baz' does not exist on type 'TestCmp'.
test.ts:10:31
@Component({..., templateUrl: './testcmp.html'})
~~~~~~~~~~~~~~~~
Error occurs in the template of component TestCmp.
```
PR Close#31952
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.
Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.
The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.
Fixes#31654
PR Close#31932
Adds support for indexing template referenecs, variables, and property
and method calls inside bound attributes and bound events. This is
mostly an extension of the existing indexing infrastructure.
PR Close#31535
Currently we always generate the `read` parameter for the view and content query instructions, however since most of the time the `read` parameter won't be set, we'll end up generating `null` which adds 5 bytes for each query when minified. These changes make it so that the `read` parameter only gets generated if it has a value.
PR Close#31667
This commit is the final patch of the ivy styling algorithm refactor.
This patch swaps functionality from the old styling mechanism to the
new refactored code by changing the instruction code the compiler
generates and by pointing the runtime instruction code to the new
styling algorithm.
PR Close#30742
Versions of CLI prior to angular/angular-cli@0e339ee did not expose the host.getModifiedResourceFiles() method.
This meant that null was being passed through to the IncrementalState.reconcile() method
to indicate that there were either no changes or the host didn't support that method.
This commit fixes a bug where we were checking for undefined rather than null when
deciding whether any resource files had changed, causing a null reference error to be thrown.
This bug was not caught by the unit testing because the tests set up the changed files
via a slightly different process, not having access to the CompilerHost, and these test
were making the erroneous assumption that undefined indicated that there were no
changed files.
PR Close#31322
Fixes all TypeScript failures caused by enabling the `--strict`
flag for test source files. We also want to enable the strict
options for tests as the strictness enforcement improves the
overall codehealth, unveiled common issues and additionally it
allows us to enable `strict` in the `tsconfig.json` that is picked
up by IDE's.
PR Close#30993
Currently we reuse the same instruction both for regular property bindings and property bindings on the `host`. The only difference between the two is that when it's on the host we shouldn't support inputs. We have an optional parameter called `nativeOnly` which is used to differentiate the two, however since `nativeOnly` is preceeded by another optional parameter (`sanitizer`), we have to generate two extra parameters for each host property bindings every time (e.g. `property('someProp', 'someValue', null, true)`).
These changes add a new instruction called `hostProperty` which avoids the need for the two parameters by removing `nativeOnly` which is always set and it allows us to omit `sanitizer` when it isn't being used.
These changes also remove the `nativeOnly` parameter from the `updateSyntheticHostBinding` instruction, because it's only generated for host elements which means that we can assume that its value will always be `true`.
PR Close#31550
Add support for indexing elements in the indexing module.
Opening and self-closing HTML tags have their selector indexed, as well
as the attributes on the element and the directives applied to an
element.
PR Close#31240
Previously, resource paths beginning with '/' (aka "rooted" paths, which
are not actually absolute filesystem paths, but are relative to the
TypeScript project root directory) were not handled correctly. The leading
'/' was stripped and the path was resolved as if it was relative, but with
no containing file for context. This led to resources in different rootDirs
not being found.
Instead, such rooted paths are now resolved without TypeScript's help, by
checking each root directory. A test is added to this effect.
PR Close#31511
When a class uses Angular decorators such as `@Input`, `@Output` and
friends without an Angular class decorator, they are compiled into a
static `ngBaseDef` field on the class, with the TypeScript declaration
of the class being altered to declare the `ngBaseDef` field to be of type
`ɵɵBaseDef`. This type however requires a generic type parameter that
corresponds with the type of the class, however the compiler did not
provide this type parameter. As a result, compiling a program where such
invalid `ngBaseDef` declarations are present will result in compilation
errors.
This commit fixes the problem by providing the generic type parameter.
Fixes#31160
PR Close#31210
Adds chaining to the `property`, `attribute` and `updateSyntheticHostBinding` instructions when they're used in a host binding.
This PR resolves FW-1404.
PR Close#31296
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
Prior to this commit, the logic to extract query information from class fields used an instance of regular Error class to throw an error. As a result, some useful information (like reference to a specific field) was missing. Replacing Error class with FatalDiagnosticError one makes the error more verbose that should simplify debugging.
PR Close#31123
Add an IndexingContext class to store indexing information and a
transformer module to generate indexing analysis. Integrate the indexing
module with the rest of NgtscProgram and add integration tests.
Closes#30959
PR Close#31151
Optimizations to skip compiling source files that had not changed
did not account for the case where only a resource file changes,
such as an external template or style file.
Now we track such dependencies and trigger a recompilation
if any of the previously tracked resources have changed.
This will require a change on the CLI side to provide the list of
resource files that changed to trigger the current compilation by
implementing `CompilerHost.getModifiedResourceFiles()`.
Closes#30947
PR Close#30954
A temporary check is in place to determine whether a key in an object
literal needs to be quoted during emit. Previously, only the presence of
a dash caused a key to become quoted, this however is not sufficient for
@angular/flex-layout to compile properly as it has dots in its inputs.
This commit extends the check to also use quotes when a dot is present.
Fixes#30114
PR Close#31146
- Removes ɵɵelementProperty instruction
- Updates tests that were using it
- NOTE: There is one test under `render3/integration_spec.ts` that is commented out, and needs to be reviewed. Basically, I could not find a good why to test what it was doing, because it was doing things that I am not sure we could generate in an acceptance test.
PR Close#30645
With View engine it was possible to declare multiple projection
definitions and to programmatically project nodes into the slots.
e.g.
```html
<ng-content></ng-content>
<ng-content></ng-content>
```
Using `ViewContainerRef#createComponent` allowed projecting
nodes into one of the projection defs (through index)
This no longer works with Ivy as the `projectionDef` instruction only
retrieves a list of selectors instead of also retrieving entries for
reserved projection slots which appear when using the default
selector multiple times (as seen above).
In order to fix this issue, the Ivy compiler now passes all
projection slots to the `projectionDef` instruction. Meaning that
there can be multiple projection slots with the same wildcard
selector. This allows multi-slot projection as seen in the
example above, and it also allows us to match the multi-slot node
projection order from View Engine (to avoid breaking changes).
It basically ensures that Ivy fully matches the View Engine behavior
except of a very small edge case that has already been discussed
in FW-886 (with the conclusion of working as intended).
Read more here: https://hackmd.io/s/Sy2kQlgTE
PR Close#30561
The R3TargetBinder "binds" an Angular template AST, computing semantic
information regarding the template and making it accessible.
One of the binding passes previously had a bug, where for the following
template:
<div *ngIf="foo as foo"></div>
which desugars to:
<ng-template ngIf [ngIf]="foo" let-foo="ngIf">
<div></div>
</ng-template>
would have the `[ngIf]` binding processed twice - in both the scope which
contains the `<ng-template>` and the scope inside the template. The bug
arises because during the latter, `foo` is a variable defined by `let-foo`,
and so the R3TargetBinder would incorrectly learn that `foo` inside `[ngIf]`
maps to that variable.
This commit fixes the bug by only processing inputs, outputs, and
templateAttrs from `Template`s in the outer scope.
PR Close#30669
Prior to this commit there were no explicit types setup for NgModuleFactory calls in ngfactories, so TypeScript inferred the type based on a given call. In some cases (when generic types were used for Components/Directives) that turned out to be problematic, so we add explicit typing for NgModuleFactory calls.
PR Close#30708
There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character
So back to the frog eyes we go.
```
__
/ɵɵ\
( -- ) - I am ineffable. I am forever.
_/ \_
/ \ / \
== == ==
```
PR Close#30546
Previously we defensively wrapped expressions in case they ran afoul of
precedence rules. For example, it would be easy to create the TS AST structure
Call(Ternary(a, b, c)), but might result in printed code of:
```
a ? b : c()
```
Whereas the actual structure we meant to generate is:
```
(a ? b : c)()
```
However the TypeScript renderer appears to be clever enough to provide
parenthesis as necessary.
This commit removes these defensive paraenthesis in the cases of binary
and ternary operations.
FW-1273
PR Close#30349
A structural directive can specify a template guard for an input, such that
the type of that input's binding can be narrowed based on the guard's return
type. Previously, such template guards could only be methods, of which an
invocation would be inserted into the type-check block (TCB). For `NgIf`,
the template guard narrowed the type of its expression to be `NonNullable`
using the following declaration:
```typescript
export declare class NgIf {
static ngTemplateGuard_ngIf<E>(dir: NgIf, expr: E): expr is NonNullable<E>
}
```
This works fine for usages such as `*ngIf="person"` but starts to introduce
false-positives when e.g. an explicit non-null check like
`*ngIf="person !== null"` is used, as the method invocation in the TCB
would not have the desired effect of narrowing `person` to become
non-nullable:
```typescript
if (NgIf.ngTemplateGuard_ngIf(directive, ctx.person !== null)) {
// Usages of `ctx.person` within this block would
// not have been narrowed to be non-nullable.
}
```
This commit introduces a new strategy for template guards to allow for the
binding expression itself to be used as template guard in the TCB. Now,
the TCB generated for `*ngIf="person !== null"` would look as follows:
```typescript
if (ctx.person !== null) {
// This time `ctx.person` will successfully have
// been narrowed to be non-nullable.
}
```
This strategy can be activated by declaring the template guard as a
property declaration with `'binding'` as literal return type.
See #30235 for an example where this led to a false positive.
PR Close#30248
Currently in Ivy `NgModule` registration happens when the class is declared, however this is inconsistent with ViewEngine and requires extra generated code. These changes remove the generated code for `registerModuleFactory`, pass the id through to the `ngModuleDef` and do the module registration inside `NgModuleFactory.create`.
This PR resolves FW-1285.
PR Close#30244
Now that the dependent files and compilation scopes are being tracked in
the incremental state, we can skip analysing and emitting source files if
none of their dependent files have changed since the last compile.
The computation of what files (and their dependencies) are unchanged is
computed during reconciliation.
This commit also removes the previous emission skipping logic, since this
approach covers those cases already.
PR Close#30238
This is the final patch to migrate the Angular styling code to have a
smaller instruction set in preparation for the runtime refactor. All
styling-related instructions now work both in template and hostBindings
functions and do not use `element` as a prefix for their names:
BEFORE:
elementStyling()
elementStyleProp()
elementClassProp()
elementStyleMap()
elementClassMap()
elementStylingApply()
AFTER:
styling()
styleProp()
classProp()
styleMap()
classMap()
stylingApply()
PR Close#30318
This patch removes all host-specific styling instructions in favor of
using element-level instructions instead. Because of the previous
patches that made sure `select(n)` worked between styling calls, all
host level instructions are not needed anymore. This patch changes each
of those instruction calls to use any of the `elementStyling*`,
`elementStyle*` and `elementClass*` styling instructions instead.
PR Close#30336
Fixes `HostBinding` and `HostListener` declarations not being inherited from base classes that don't have an Angular decorator.
This PR resolves FW-1275.
PR Close#30158
ngtsc generates type constructors which infer the type of a directive based
on its inputs. Previously, a bug existed where this inference would fail in
the case of 'any' input values. For example, the inference of NgForOf fails
when an 'any' is provided, as it causes TypeScript to attempt to solve:
T[] = any
In this case, T gets inferred as {}, the empty object type, which is not
desirable.
The fix is to assign generic types in type constructors a default type of
'any', which TypeScript uses instead of {} when inference fails.
PR Close#30094
ngtsc previously could attempt to reuse the main ts.Program twice. This
occurred when template type-checking was enabled and then an incremental
build was performed. This breaks a TypeScript invariant - ts.Programs can
only be reused once.
The creation of the template type-checking program reuses the main program,
rendering it moot. Then, on the next incremental build the main program
would be subject to reuse again, which would crash inside TypeScript.
This commit fixes the issue by reusing the template type-checking program
from the previous run on the next incremental build. Since under normal
circumstances the files in the type-checking program aren't changed, this
should be just as fast.
Testing strategy: a test is added in the incremental_spec which validates
that program reuse with type-checking turned on does not crash the compiler.
Fixes#30079
PR Close#30090
Prior to this commit, the check that verifies correct "id" field type was too strict and didn't allow `module.id` as @NgModule's "id" field value. This change adds a special handling for `module.id` and uses it as id of @NgModule if specified.
PR Close#30040