Turns out that writing to global state is more expensive than writing to
a property on an object.
Slower:
````
let count = 0;
function increment() {
count++;
}
```
Faster:
````
const state = {
count: 0
};
function increment() {
state.count++;
}
```
This change moves all of the instruction state into a single state object.
`noop_change_detection` benchmark
Pre refactoring: 16.7 us
Post refactoring: 14.523 us (-13.3%)
PR Close#33093
Removes the `Renderer` and related symbols which have been deprecated since version 4.
BREAKING CHANGES:
* `Renderer` has been removed. Use `Renderer2` instead.
* `RenderComponentType` has been removed. Use `RendererType2` instead.
* `RootRenderer` has been removed. Use `RendererFactory2` instead.
PR Close#33019
Prior to this patch, each time `advance()` would run (or when a
templateFn or hostBindings code exits) then the core change detection
code would check to see whether the styling data needs to be reset. This
patch removes that functionality and places everything inside of the
scheduled styling exit function. This means that each time one or more
styling bindings run (even if the value hasn't changed) then an exit
function will be scheduled and that will do all the cleanup.
PR Close#32591
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
PR Close#32591
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
PR Close#32596
This patch is a final major refactor in styling Angular.
This PR includes three main fixes:
All temporary state taht is persisted between template style/class application
and style/class application in host bindings is now removed.
Removes the styling() and stylingApply() instructions.
Introduces a "direct apply" mode that is used apply prop-based
style/class in the event that there are no map-based bindings as
well as property collisions.
PR Close#32259
Prior to this fix if a `NO_CHANGE` value was assigned to a binding, or
an interpolation value rendererd a `NO_CHANGE` value, then the presence
of that value would cause the internal counter index values to not
increment properly. This patch ensures that this doesn't happen and
that the counter/bitmask values update accordingly.
PR Close#32143
This test uses localization in the `AppComponent` component:
* an `i18n` attribute in the template
* a call to the `$localize` tag in the component constructor
PR Close#31609
This commit changes the Angular compiler (ivy-only) to generate `$localize`
tagged strings for component templates that use `i18n` attributes.
BREAKING CHANGE
Since `$localize` is a global function, it must be included in any applications
that use i18n. This is achieved by importing the `@angular/localize` package
into an appropriate bundle, where it will be executed before the renderer
needs to call `$localize`. For CLI based projects, this is best done in
the `polyfills.ts` file.
```ts
import '@angular/localize';
```
For non-CLI applications this could be added as a script to the index.html
file or another suitable script file.
PR Close#31609
Reworks the compiler to output the factories for directives, components and pipes under a new static field called `ngFactoryFn`, instead of the usual `factory` property in their respective defs. This should eventually allow us to inject any kind of decorated class (e.g. a pipe).
**Note:** these changes are the first part of the refactor and they don't include injectables. I decided to leave injectables for a follow-up PR, because there's some more cases we need to handle when it comes to their factories. Furthermore, directives, components and pipes make up most of the compiler output tests that need to be refactored and it'll make follow-up PRs easier to review if the tests are cleaned up now.
This is part of the larger refactor for FW-1468.
PR Close#31953
Angular hooks come after 2 flavours:
- init hooks (OnInit, AfterContentInit, AfterViewInit);
- check hooks (OnChanges, DoChanges, AfterContentChecked, AfterViewChecked).
We need to do more processing for init hooks to ensure that those hooks
are run once and only once for a given directive (even in case of errors).
As soon as all init hooks execute to completion we are only left with the
checks to execute.
It turns out that keeping track of the remaining init hooks to execute is
rather expensive (multiple LView flags reads, writes and checks). But we can
observe that non of this tracking is needed as soon as all init hooks are
completed.
This PR takes advantage of the above observations and splits hooks processing
functions into:
- init-specific (slower but less common);
- check-specific (faster and more common).
NOTE: there is code duplication in this PR and it is left like this intentinally:
hand-inlining this perf-critical code makes the view refresh process substentially
faster.
PR Close#32131
Currently, it's not possible to tree-shake away the
coordination layer between HammerJS and Angular's
EventManager. This means that you get the HammerJS
support code in your production bundle whether or
not you actually use the library.
This commit removes the Hammer providers from the
default platform_browser providers list and instead
provides them as part of a `HammerModule`. Apps on
Ivy just need to import the `HammerModule` at root
to turn on Hammer support. Otherwise all Hammer code
will tree-shake away. View Engine apps will require
no change.
BREAKING CHANGE
Previously, in Ivy applications, Hammer providers
were included by default. With this commit, apps
that want Hammer support must import `HammerModule`
in their root module.
PR Close#32203
Bundle size changed in both zone.js(legacy) and zone-evergreen.js
- zone.js(legacy) package increased a little because the following feature and fixes.
1. #31699, handle MSPointer events PR
2. https://github.com/angular/zone.js/pull/1219 to add __zone_symbol__ customization support
- zone-evergreen.js package decreased because
1. the MSPointer PR only for legacy
2. the Object.defineProperty patch is moved to legacy #31660
PR Close#31975
In VE the `Sanitizer` is always available in `BrowserModule` because the VE retrieves it using injection.
In Ivy the injection is optional and we have instructions instead of component definition arrays. The implication of this is that in Ivy the instructions can pull in the sanitizer only when they are working with a property which is known to be unsafe. Because the Injection is optional this works even if no Sanitizer is present. So in Ivy we first use the sanitizer which is pulled in by the instruction, unless one is available through the `Injector` then we use that one instead.
This PR does few things:
1) It makes `Sanitizer` optional in Ivy.
2) It makes `DomSanitizer` tree shakable.
3) It aligns the semantics of Ivy `Sanitizer` with that of the Ivy sanitization rules.
4) It refactors `DomSanitizer` to use same functions as Ivy sanitization for consistency.
PR Close#31934
In the previous patch () all the existing styling code was turned
off in favor of using the new refactored ivy styling code. This
patch is a follow up patch to that and removes all old, unused
styling code from the render3 directory.
PR Close#31193
This commit is the final patch of the ivy styling algorithm refactor.
This patch swaps functionality from the old styling mechanism to the
new refactored code by changing the instruction code the compiler
generates and by pointing the runtime instruction code to the new
styling algorithm.
PR Close#30742
The Angular runtime frequently calls into user code (for example, when
writing to a property binding). Since user code can throw errors, calls to
it are frequently wrapped in a try-finally block. In Ivy, the following
pattern is common:
```typescript
enterView();
try {
callUserCode();
} finally {
leaveView();
}
```
This has a significant problem, however: `leaveView` has a side effect: it
calls any pending lifecycle hooks that might've been scheduled during the
current round of change detection. Generally it's a bad idea to run
lifecycle hooks after the application has crashed. The application is in an
inconsistent state - directives may not be instantiated fully, queries may
not be resolved, bindings may not have been applied, etc. Invariants that
the app code relies upon may not hold. Further crashes or broken behavior
are likely.
Frequently, lifecycle hooks are used to make assertions about these
invariants. When these assertions fail, they will throw and "swallow" the
original error, making debugging of the problem much more difficult.
This commit modifies `leaveView` to understand whether the application is
currently crashing, via a parameter `safeToRunHooks`. This parameter is set
by modifying the above pattern:
```typescript
enterView();
let safeToRunHooks = false;
try {
callUserCode();
safeToRunHooks = true;
} finally {
leaveView(..., safeToRunHooks);
}
```
If `callUserCode` crashes, then `safeToRunHooks` will never be set to `true`
and `leaveView` won't call any further user code. The original error will
then propagate back up the stack and be reported correctly. A test is added
to verify this behavior.
PR Close#31244
Projecting bare ICU expressions failed because we would assume that component's content nodes would be projected later and doing so at that point would be wasteful. But ICU nodes are handled independently and should be inserted immediately because they will be ignored by projections.
FW-1348 #resolve
PR Close#30696
The `flatten` function used `concat` and `slice` which created a lot of intermediary
object allocations. Because `flatten` is used from query any benchmark which
used query would exhibit high minor GC counts.
PR Close#30468
This is the first refactor PR designed to change how styling bindings
(i.e. `[style]` and `[class]`) behave in Ivy. Instead of having a heavy
element-by-element context be generated for each element, this new
refactor aims to use a single context for each `tNode` element that is
examined and iterated over when styling values are to be applied to the
element.
This patch brings this new functionality to prop-based bindings such as
`[style.prop]` and `[class.name]`.
PR Close#30469
Ivy uses R3Injector, but we are currently pulling in both the StaticInjector
(View Engine injector) and the R3Injector when running with Ivy. This commit
adds an ivy switch so calling Injector.create() pulls in the correct
implementation of the injector depending on whether you are using VE or Ivy.
This saves us about 3KB in the bundle.
PR Close#30219
We recently had an unexpected size regression in the hello world
tests because the CLI devkit released an RC that regressed us and
the dependencies were not pinned. This change ensures that we only
update dependencies like devkit deliberately, so we do not have
mysterious breakages caused by other packages.
PR Close#30152
Prior to this commit, we were pulling DebugNode and DebugElement
into production builds because BrowserModule automatically pulled
in NgProbe and thus getDebugNode. In Ivy, this is not necessary
because Ivy has its own set of debug utilities. We should use these
existing tools instead of NgProbe.
This commit adds an Ivy switch so we do not pull in NgProbe utilities
when running with Ivy. This saves us ~8KB in prod builds.
PR Close#30130
Master is red due to a size regression that was not caught before. We are making this change to bring master back to green state and will perform further investigation.
PR Close#30134