
Developer Preview Only
Some details might change

Angular for TypeScript Cheat Sheet (v2.0.0-alpha.44)
Source: angular.io/cheatsheet

Developer Preview Only - some details may change

Angular for TypeScript Cheat Sheet
(v2.0.0-alpha.43)

Source: angular.io/cheatsheet

Bootstrapping import {bootstrap} from 'angular2/angular2';

bootstrap (MyAppComponent, [MyService,
provide(...)]);

Bootstraps an application with MyAppComponent as the root
component and configures the DI providers.

Template syntax

<input [value] ="firstName"> Binds property value to the result of expression firstName.

<div [attr.role] ="myAriaRole"> Binds attribute role to the result of expression myAriaRole.

<div [class.extra-sparkle] ="isDelightful"> Binds the presence of the css class extra-sparkle on the element
to the truthiness of the expression isDelightful.

<div [style.width.px] ="mySize"> Binds style property width to the result of expression mySize in
pixels. Units are optional.

<button (click) ="readRainbow($event)"> Calls method readRainbow when a click event is triggered on this
button element (or its children) and passes in the event object.

<div title="Hello {{ponyName}} "> Binds a property to an interpolated string, e.g. "Hello Seabiscuit".
Equivalent to: <div [title]="'Hello' + ponyName">

<p>Hello {{ponyName}} </p> Binds text content to an interpolated string, e.g. "Hello Seabiscuit".

<my-cmp [(title)] ="name"> Sets up two-way data binding. Equivalent to:
<my-cmp [title]="name" (title-change)="name=$event">

<video #movieplayer ...>
<button (click)="movieplayer.play()" >

Creates a local variable movieplayer that provides access to the
video element instance in data- and event-binding expressions in the
current template.

<p * my-unless="myExpression">...</p> The * symbol means that the current element will be turned into an
embedded template. Equivalent to:
<template
[my-unless]="myExpression"><p>...</p></template>

<p>Card No.: {{cardNumber |
myCreditCardNumberFormatter }}</p>

Transforms the current value of expression cardNumber via pipe
called creditCardNumberFormatter.

<p>Employer: {{employer ? .companyName}}</p> The Elvis operator (?) means that the employer field is optional
and if undefined, the rest of the expression should be ignored.

Built-in directives import {NgIf, ...} from 'angular2/angular2';

<section * ng-if ="showSection"> Removes or recreates a portion of the DOM tree based on the
showSection expression.

<li *ng-for ="#item of list">

Turns the li element and its contents into a template, and uses that
to instantiate a view for each item in list.

<div [ng-switch]="conditionExpression">
 <template [ng-switch-when]="case1Exp">...</template>

Conditionally swaps the contents of the div by selecting one of the
embedded templates based on the current value of

1

Developer Preview Only - some details may change

 <template ng-switch-when ="case2LiteralString">...</template>
 <template ng-switch-default >...</template>
</div>

conditionExpression.

<div [ng-class] ="{active: isActive, disabled:
isDisabled}">

Binds the presence of css classes on the element to the truthiness of
the associated map values. The right-hand side expression should
return {class-name: true/false} map.

Forms import {FORM_DIRECTIVES} from 'angular2/angular2';

<input [(ng-model)]="userName"> Provides two-way data-binding, parsing and validation for form
controls.

Class decorators import {Directive, ...} from 'angular2/angular2';

@Component ({...})
class MyComponent() {}

Declares that a class is a component and provides metadata about the
component.

@Pipe ({...})
class MyPipe() {}

Declares that a class is a pipe and provides metadata about the pipe.

@Injectable ()
class MyService() {}

Declares that a class has dependencies that should be injected into the
constructor when the dependency injector is creating an instance of
this class.

@Directive configuration (used as @Directive({ property1: value1, ... }))

selector : '.cool-button:not(a)' Specifies a css selector that identifies this directive within a template.
Supported selectors include: element, [attribute], .class,
and :not().
Does not support parent-child relationship selectors.

providers : [MyService, provide(...)] Array of dependency injection providers for this directive and its
children.

@Component configuration (@Component extends @Directive, so the @Directive configuration above applies to components as well)

viewProviders : [MyService, provide(...)] Array of dependency injection providers scoped to this component's
view.

template: ' Hello {{name}}'
templateUrl: 'my-component.html'

Inline template / external template url of the component's view.

styles: '.primary {color: red} '
styleUrls: ['my-component.css']

List of inline css styles / external stylesheet urls for styling
component’s view.

directives : [MyDirective, MyComponent] List of directives used in the the component’s template.

pipes : [MyPipe, OtherPipe] List of pipes used in the component's template.

Class field decorators for directives and components import {Input, ...} from 'angular2/angular2';

@Input() myProperty; Declares an input property that we can update via property binding, e.g.
<my-cmp [my-property]="someExpression">

@Output() myEvent = new EventEmitter(); Declares an output property that fires events to which we can subscribe
with an event binding, e.g. <my-cmp
(my-event)="doSomething()">

2

Developer Preview Only - some details may change

 <template ng-switch-when ="case2LiteralString">...</template>
 <template ng-switch-default >...</template>
</div>

conditionExpression.

<div [ng-class] ="{active: isActive, disabled:
isDisabled}">

Binds the presence of css classes on the element to the truthiness of
the associated map values. The right-hand side expression should
return {class-name: true/false} map.

Forms import {FORM_DIRECTIVES} from 'angular2/angular2';

<input [(ng-model)]="userName"> Provides two-way data-binding, parsing and validation for form
controls.

Class decorators import {Directive, ...} from 'angular2/angular2';

@Component ({...})
class MyComponent() {}

Declares that a class is a component and provides metadata about the
component.

@Pipe ({...})
class MyPipe() {}

Declares that a class is a pipe and provides metadata about the pipe.

@Injectable ()
class MyService() {}

Declares that a class has dependencies that should be injected into the
constructor when the dependency injector is creating an instance of
this class.

@Directive configuration (used as @Directive({ property1: value1, ... }))

selector : '.cool-button:not(a)' Specifies a css selector that identifies this directive within a template.
Supported selectors include: element, [attribute], .class,
and :not().
Does not support parent-child relationship selectors.

providers : [MyService, provide(...)] Array of dependency injection providers for this directive and its
children.

@Component configuration (@Component extends @Directive, so the @Directive configuration above applies to components as well)

viewProviders : [MyService, provide(...)] Array of dependency injection providers scoped to this component's
view.

template: ' Hello {{name}}'
templateUrl: 'my-component.html'

Inline template / external template url of the component's view.

styles: '.primary {color: red} '
styleUrls: ['my-component.css']

List of inline css styles / external stylesheet urls for styling
component’s view.

directives : [MyDirective, MyComponent] List of directives used in the the component’s template.

pipes : [MyPipe, OtherPipe] List of pipes used in the component's template.

Class field decorators for directives and components import {Input, ...} from 'angular2/angular2';

@Input() myProperty; Declares an input property that we can update via property binding, e.g.
<my-cmp [my-property]="someExpression">

@Output() myEvent = new EventEmitter(); Declares an output property that fires events to which we can subscribe
with an event binding, e.g. <my-cmp
(my-event)="doSomething()">

2

Developer Preview Only - some details may change

@HostBinding('[class.valid]') isValid; Binds a host element property (e.g. css class valid) to
directive/component property (e.g. isValid)

@HostListener('click', ['$event']) onClick(e) {...} Subscribes to a host element event (e.g. click) with a
directive/component method (e.g., onClick), optionally passing an
argument ($event)

@ContentChild(myPredicate) myChildComponent; Binds the first result of the component content query (myPredicate)
to the myChildComponent property of the class.

@ContentChildren(myPredicate) myChildComponents;

Binds the results of the component content query (myPredicate) to
the myChildComponents property of the class.

@ViewChild(myPredicate) myChildComponent; Binds the first result of the component view query (myPredicate) to
the myChildComponent property of the class. Not available for
directives.

@ViewChildren(myPredicate) myChildComponents;

Binds the results of the component view query (myPredicate) to the
myChildComponents property of the class. Not available for
directives.

Directive and component change detection and lifecycle hooks (implemented as class methods)

constructor (myService: MyService, ...) { ... } The class constructor is called before any other lifecycle hook. Use it to
inject dependencies, but avoid any serious work here.

onChanges (changeRecord) { ... } Called after every change to input properties and before processing
content or child views.

onInit () { ... } Called after the constructor, initializing input properties, and the first
call to onChanges.

doCheck () { ... } Called every time that the input properties of a component or a
directive are checked. Use it to extend change detection by performing
a custom check.

afterContentInit () { ... } Called after onInit when the component's or directive's content has
been initialized.

afterContentChecked () { ... } Called after every check of the component's or directive's content.

afterViewInit () { ... } Called after onContentInit when the component's view has been
initialized. Applies to components only.

afterViewChecked () { ... } Called after every check of the component's view. Applies to
components only.

onDestroy () { ... } Called once, before the instance is destroyed.

Dependency injection configuration import {provide} from 'angular2/angular2';

provide (MyService, { useClass : MyMockService}) Sets or overrides the provider for MyService to the
MyMockService class.

provide (MyService, { useFactory : myFactory}) Sets or overrides the provider for MyService to the myFactory
factory function.

provide (MyValue, { useValue : 41}) Sets or overrides the provider for MyValue to the value 41.

Routing and navigation import {RouteConfig, ROUTER_DIRECTIVES, ROUTER_PROVIDERS, ...} from 'angular2/router';

3

Developer Preview Only - some details may change

@HostBinding('[class.valid]') isValid; Binds a host element property (e.g. css class valid) to
directive/component property (e.g. isValid)

@HostListener('click', ['$event']) onClick(e) {...} Subscribes to a host element event (e.g. click) with a
directive/component method (e.g., onClick), optionally passing an
argument ($event)

@ContentChild(myPredicate) myChildComponent; Binds the first result of the component content query (myPredicate)
to the myChildComponent property of the class.

@ContentChildren(myPredicate) myChildComponents;

Binds the results of the component content query (myPredicate) to
the myChildComponents property of the class.

@ViewChild(myPredicate) myChildComponent; Binds the first result of the component view query (myPredicate) to
the myChildComponent property of the class. Not available for
directives.

@ViewChildren(myPredicate) myChildComponents;

Binds the results of the component view query (myPredicate) to the
myChildComponents property of the class. Not available for
directives.

Directive and component change detection and lifecycle hooks (implemented as class methods)

constructor (myService: MyService, ...) { ... } The class constructor is called before any other lifecycle hook. Use it to
inject dependencies, but avoid any serious work here.

onChanges (changeRecord) { ... } Called after every change to input properties and before processing
content or child views.

onInit () { ... } Called after the constructor, initializing input properties, and the first
call to onChanges.

doCheck () { ... } Called every time that the input properties of a component or a
directive are checked. Use it to extend change detection by performing
a custom check.

afterContentInit () { ... } Called after onInit when the component's or directive's content has
been initialized.

afterContentChecked () { ... } Called after every check of the component's or directive's content.

afterViewInit () { ... } Called after onContentInit when the component's view has been
initialized. Applies to components only.

afterViewChecked () { ... } Called after every check of the component's view. Applies to
components only.

onDestroy () { ... } Called once, before the instance is destroyed.

Dependency injection configuration import {provide} from 'angular2/angular2';

provide (MyService, { useClass : MyMockService}) Sets or overrides the provider for MyService to the
MyMockService class.

provide (MyService, { useFactory : myFactory}) Sets or overrides the provider for MyService to the myFactory
factory function.

provide (MyValue, { useValue : 41}) Sets or overrides the provider for MyValue to the value 41.

Routing and navigation import {RouteConfig, ROUTER_DIRECTIVES, ROUTER_PROVIDERS, ...} from 'angular2/router';

3

Developer Preview Only - some details may change

@RouteConfig ([
 { path: '/:myParam', component: MyComponent, as: 'MyCmp' },
 { path: '/staticPath', component: ..., as: ...}
 { path: '/*wildCardParam', component: ..., as: ...}
])
class MyComponent() {}

Configures routes for the decorated component. Supports static,
parameterized and wildcard routes.

< router-outlet ></ router-outlet > Marks the location to load the component of the active route.

<a [router-link]="['/MyCmp', {myParam: 'value' }
]">

Creates a link to a different view based on a route instruction consisting
of a route name and optional parameters. The route name matches the
as property of a configured route. Add the '/' prefix to navigate to a root
route; add the './' prefix for a child route.

@CanActivate (() => { ... })
class MyComponent() {}

A component decorator defining a function that the router should call
first to determine if it should activate this component. Should return a
boolean or a promise.

onActivate (nextInstruction, prevInstruction) { ...
}

After navigating to a component, the router calls component's
onActivate method (if defined).

canReuse (nextInstruction, prevInstruction) { ... } The router calls a component's canReuse method (if defined) to
determine whether to reuse the instance or destroy it and create a new
instance. Should return a boolean or a promise.

onReuse (nextInstruction, prevInstruction) { ... } The router calls the component's onReuse method (if defined) when
it re-uses a component instance.

canDeactivate (nextInstruction, prevInstruction) {
... }

The router calls the canDeactivate methods (if defined) of every
component that would be removed after a navigation. The navigation
proceeds if and only if all such methods return true or a promise that
is resolved.

onDeactivate (nextInstruction, prevInstruction) {
... }

Called before the directive is removed as the result of a route change.
May return a promise that pauses removing the directive until the
promise resolves.

4

