Chuck Jazdzewski e178ee4ba0 fix(compiler): Added support for '* as m' style imports. (#9077)
Also includes fixes for broken test.
2016-06-09 13:23:29 -07:00

498 lines
21 KiB
TypeScript

import * as ts from 'typescript';
import {MetadataError, MetadataGlobalReferenceExpression, MetadataImportedSymbolReferenceExpression, MetadataSymbolicCallExpression, MetadataSymbolicReferenceExpression, MetadataValue, isMetadataError, isMetadataGlobalReferenceExpression, isMetadataImportedSymbolReferenceExpression, isMetadataModuleReferenceExpression, isMetadataSymbolicReferenceExpression} from './schema';
import {Symbols} from './symbols';
function isMethodCallOf(callExpression: ts.CallExpression, memberName: string): boolean {
const expression = callExpression.expression;
if (expression.kind === ts.SyntaxKind.PropertyAccessExpression) {
const propertyAccessExpression = <ts.PropertyAccessExpression>expression;
const name = propertyAccessExpression.name;
if (name.kind == ts.SyntaxKind.Identifier) {
return name.text === memberName;
}
}
return false;
}
function isCallOf(callExpression: ts.CallExpression, ident: string): boolean {
const expression = callExpression.expression;
if (expression.kind === ts.SyntaxKind.Identifier) {
const identifier = <ts.Identifier>expression;
return identifier.text === ident;
}
return false;
}
/**
* ts.forEachChild stops iterating children when the callback return a truthy value.
* This method inverts this to implement an `every` style iterator. It will return
* true if every call to `cb` returns `true`.
*/
function everyNodeChild(node: ts.Node, cb: (node: ts.Node) => boolean) {
return !ts.forEachChild(node, node => !cb(node));
}
export function isPrimitive(value: any): boolean {
return Object(value) !== value;
}
function isDefined(obj: any): boolean {
return obj !== undefined;
}
// import {propertyName as name} from 'place'
// import {name} from 'place'
export interface ImportSpecifierMetadata {
name: string;
propertyName?: string;
}
export interface ImportMetadata {
defaultName?: string; // import d from 'place'
namespace?: string; // import * as d from 'place'
namedImports?: ImportSpecifierMetadata[]; // import {a} from 'place'
from: string; // from 'place'
}
function getSourceFileOfNode(node: ts.Node): ts.SourceFile {
while (node && node.kind != ts.SyntaxKind.SourceFile) {
node = node.parent
}
return <ts.SourceFile>node;
}
/* @internal */
export function errorSymbol(
message: string, node?: ts.Node, context?: {[name: string]: string},
sourceFile?: ts.SourceFile): MetadataError {
let result: MetadataError;
if (node) {
sourceFile = sourceFile || getSourceFileOfNode(node);
if (sourceFile) {
let {line, character} = ts.getLineAndCharacterOfPosition(sourceFile, node.pos);
result = {__symbolic: 'error', message, line, character};
};
}
if (!result) {
result = {__symbolic: 'error', message};
}
if (context) {
result.context = context;
}
return result;
}
/**
* Produce a symbolic representation of an expression folding values into their final value when
* possible.
*/
export class Evaluator {
constructor(private symbols: Symbols) {}
nameOf(node: ts.Node): string|MetadataError {
if (node.kind == ts.SyntaxKind.Identifier) {
return (<ts.Identifier>node).text;
}
const result = this.evaluateNode(node);
if (isMetadataError(result) || typeof result === 'string') {
return result;
} else {
return errorSymbol('Name expected', node, {received: node.getText()});
}
}
/**
* Returns true if the expression represented by `node` can be folded into a literal expression.
*
* For example, a literal is always foldable. This means that literal expressions such as `1.2`
* `"Some value"` `true` `false` are foldable.
*
* - An object literal is foldable if all the properties in the literal are foldable.
* - An array literal is foldable if all the elements are foldable.
* - A call is foldable if it is a call to a Array.prototype.concat or a call to CONST_EXPR.
* - A property access is foldable if the object is foldable.
* - A array index is foldable if index expression is foldable and the array is foldable.
* - Binary operator expressions are foldable if the left and right expressions are foldable and
* it is one of '+', '-', '*', '/', '%', '||', and '&&'.
* - An identifier is foldable if a value can be found for its symbol in the evaluator symbol
* table.
*/
public isFoldable(node: ts.Node): boolean {
return this.isFoldableWorker(node, new Map<ts.Node, boolean>());
}
private isFoldableWorker(node: ts.Node, folding: Map<ts.Node, boolean>): boolean {
if (node) {
switch (node.kind) {
case ts.SyntaxKind.ObjectLiteralExpression:
return everyNodeChild(node, child => {
if (child.kind === ts.SyntaxKind.PropertyAssignment) {
const propertyAssignment = <ts.PropertyAssignment>child;
return this.isFoldableWorker(propertyAssignment.initializer, folding);
}
return false;
});
case ts.SyntaxKind.ArrayLiteralExpression:
return everyNodeChild(node, child => this.isFoldableWorker(child, folding));
case ts.SyntaxKind.CallExpression:
const callExpression = <ts.CallExpression>node;
// We can fold a <array>.concat(<v>).
if (isMethodCallOf(callExpression, 'concat') && callExpression.arguments.length === 1) {
const arrayNode = (<ts.PropertyAccessExpression>callExpression.expression).expression;
if (this.isFoldableWorker(arrayNode, folding) &&
this.isFoldableWorker(callExpression.arguments[0], folding)) {
// It needs to be an array.
const arrayValue = this.evaluateNode(arrayNode);
if (arrayValue && Array.isArray(arrayValue)) {
return true;
}
}
}
// We can fold a call to CONST_EXPR
if (isCallOf(callExpression, 'CONST_EXPR') && callExpression.arguments.length === 1)
return this.isFoldableWorker(callExpression.arguments[0], folding);
return false;
case ts.SyntaxKind.NoSubstitutionTemplateLiteral:
case ts.SyntaxKind.StringLiteral:
case ts.SyntaxKind.NumericLiteral:
case ts.SyntaxKind.NullKeyword:
case ts.SyntaxKind.TrueKeyword:
case ts.SyntaxKind.FalseKeyword:
return true;
case ts.SyntaxKind.ParenthesizedExpression:
const parenthesizedExpression = <ts.ParenthesizedExpression>node;
return this.isFoldableWorker(parenthesizedExpression.expression, folding);
case ts.SyntaxKind.BinaryExpression:
const binaryExpression = <ts.BinaryExpression>node;
switch (binaryExpression.operatorToken.kind) {
case ts.SyntaxKind.PlusToken:
case ts.SyntaxKind.MinusToken:
case ts.SyntaxKind.AsteriskToken:
case ts.SyntaxKind.SlashToken:
case ts.SyntaxKind.PercentToken:
case ts.SyntaxKind.AmpersandAmpersandToken:
case ts.SyntaxKind.BarBarToken:
return this.isFoldableWorker(binaryExpression.left, folding) &&
this.isFoldableWorker(binaryExpression.right, folding);
}
case ts.SyntaxKind.PropertyAccessExpression:
const propertyAccessExpression = <ts.PropertyAccessExpression>node;
return this.isFoldableWorker(propertyAccessExpression.expression, folding);
case ts.SyntaxKind.ElementAccessExpression:
const elementAccessExpression = <ts.ElementAccessExpression>node;
return this.isFoldableWorker(elementAccessExpression.expression, folding) &&
this.isFoldableWorker(elementAccessExpression.argumentExpression, folding);
case ts.SyntaxKind.Identifier:
let identifier = <ts.Identifier>node;
let reference = this.symbols.resolve(identifier.text);
if (isPrimitive(reference)) {
return true;
}
break;
}
}
return false;
}
/**
* Produce a JSON serialiable object representing `node`. The foldable values in the expression
* tree are folded. For example, a node representing `1 + 2` is folded into `3`.
*/
public evaluateNode(node: ts.Node): MetadataValue {
let error: MetadataError|undefined;
switch (node.kind) {
case ts.SyntaxKind.ObjectLiteralExpression:
let obj: {[name: string]: any} = {};
ts.forEachChild(node, child => {
switch (child.kind) {
case ts.SyntaxKind.PropertyAssignment:
const assignment = <ts.PropertyAssignment>child;
const propertyName = this.nameOf(assignment.name);
if (isMetadataError(propertyName)) {
error = propertyName;
return true;
}
const propertyValue = this.evaluateNode(assignment.initializer);
if (isMetadataError(propertyValue)) {
error = propertyValue;
return true; // Stop the forEachChild.
} else {
obj[<string>propertyName] = propertyValue;
}
}
});
if (error) return error;
return obj;
case ts.SyntaxKind.ArrayLiteralExpression:
let arr: MetadataValue[] = [];
ts.forEachChild(node, child => {
const value = this.evaluateNode(child);
if (isMetadataError(value)) {
error = value;
return true; // Stop the forEachChild.
}
arr.push(value);
});
if (error) return error;
return arr;
case ts.SyntaxKind.CallExpression:
const callExpression = <ts.CallExpression>node;
if (isCallOf(callExpression, 'forwardRef') && callExpression.arguments.length === 1) {
const firstArgument = callExpression.arguments[0];
if (firstArgument.kind == ts.SyntaxKind.ArrowFunction) {
const arrowFunction = <ts.ArrowFunction>firstArgument;
return this.evaluateNode(arrowFunction.body);
}
}
const args = callExpression.arguments.map(arg => this.evaluateNode(arg));
if (args.some(isMetadataError)) {
return args.find(isMetadataError);
}
if (this.isFoldable(callExpression)) {
if (isMethodCallOf(callExpression, 'concat')) {
const arrayValue = <MetadataValue[]>this.evaluateNode(
(<ts.PropertyAccessExpression>callExpression.expression).expression);
if (isMetadataError(arrayValue)) return arrayValue;
return arrayValue.concat(args[0]);
}
}
// Always fold a CONST_EXPR even if the argument is not foldable.
if (isCallOf(callExpression, 'CONST_EXPR') && callExpression.arguments.length === 1) {
return args[0];
}
const expression = this.evaluateNode(callExpression.expression);
if (isMetadataError(expression)) {
return expression;
}
let result: MetadataSymbolicCallExpression = {__symbolic: 'call', expression: expression};
if (args && args.length) {
result.arguments = args;
}
return result;
case ts.SyntaxKind.NewExpression:
const newExpression = <ts.NewExpression>node;
const newArgs = newExpression.arguments.map(arg => this.evaluateNode(arg));
if (newArgs.some(isMetadataError)) {
return newArgs.find(isMetadataError);
}
const newTarget = this.evaluateNode(newExpression.expression);
if (isMetadataError(newTarget)) {
return newTarget;
}
const call: MetadataSymbolicCallExpression = {__symbolic: 'new', expression: newTarget};
if (newArgs.length) {
call.arguments = newArgs;
}
return call;
case ts.SyntaxKind.PropertyAccessExpression: {
const propertyAccessExpression = <ts.PropertyAccessExpression>node;
const expression = this.evaluateNode(propertyAccessExpression.expression);
if (isMetadataError(expression)) {
return expression;
}
const member = this.nameOf(propertyAccessExpression.name);
if (isMetadataError(member)) {
return member;
}
if (this.isFoldable(propertyAccessExpression.expression))
return (<any>expression)[<string>member];
if (isMetadataModuleReferenceExpression(expression)) {
// A select into a module refrence and be converted into a reference to the symbol
// in the module
return {__symbolic: 'reference', module: expression.module, name: member};
}
return {__symbolic: 'select', expression, member};
}
case ts.SyntaxKind.ElementAccessExpression: {
const elementAccessExpression = <ts.ElementAccessExpression>node;
const expression = this.evaluateNode(elementAccessExpression.expression);
if (isMetadataError(expression)) {
return expression;
}
const index = this.evaluateNode(elementAccessExpression.argumentExpression);
if (isMetadataError(expression)) {
return expression;
}
if (this.isFoldable(elementAccessExpression.expression) &&
this.isFoldable(elementAccessExpression.argumentExpression))
return (<any>expression)[<string|number>index];
return {__symbolic: 'index', expression, index};
}
case ts.SyntaxKind.Identifier:
const identifier = <ts.Identifier>node;
const name = identifier.text;
const reference = this.symbols.resolve(name);
if (reference === undefined) {
// Encode as a global reference. StaticReflector will check the reference.
return { __symbolic: 'reference', name }
}
return reference;
case ts.SyntaxKind.TypeReference:
const typeReferenceNode = <ts.TypeReferenceNode>node;
const typeNameNode = typeReferenceNode.typeName;
const getReference: (typeNameNode: ts.Identifier | ts.QualifiedName) =>
MetadataSymbolicReferenceExpression | MetadataError = node => {
if (typeNameNode.kind === ts.SyntaxKind.QualifiedName) {
const qualifiedName = <ts.QualifiedName>node;
const left = this.evaluateNode(qualifiedName.left);
if (isMetadataModuleReferenceExpression(left)) {
return <MetadataImportedSymbolReferenceExpression> {
__symbolic: 'reference', module: left.module, name: qualifiedName.right.text
}
}
return errorSymbol('Qualified type names not supported', node);
} else {
const identifier = <ts.Identifier>typeNameNode;
let symbol = this.symbols.resolve(identifier.text);
if (isMetadataError(symbol) || isMetadataSymbolicReferenceExpression(symbol)) {
return symbol;
}
return errorSymbol('Could not resolve type', node, {typeName: identifier.text});
}
};
const typeReference = getReference(typeNameNode);
if (isMetadataError(typeReference)) {
return typeReference;
}
if (!isMetadataModuleReferenceExpression(typeReference) &&
typeReferenceNode.typeArguments && typeReferenceNode.typeArguments.length) {
const args = typeReferenceNode.typeArguments.map(element => this.evaluateNode(element));
// TODO: Remove typecast when upgraded to 2.0 as it will be corretly inferred.
// Some versions of 1.9 do not infer this correctly.
(<MetadataImportedSymbolReferenceExpression>typeReference).arguments = args;
}
return typeReference;
case ts.SyntaxKind.NoSubstitutionTemplateLiteral:
return (<ts.LiteralExpression>node).text;
case ts.SyntaxKind.StringLiteral:
return (<ts.StringLiteral>node).text;
case ts.SyntaxKind.NumericLiteral:
return parseFloat((<ts.LiteralExpression>node).text);
case ts.SyntaxKind.AnyKeyword:
return {__symbolic: 'reference', name: 'any'};
case ts.SyntaxKind.StringKeyword:
return {__symbolic: 'reference', name: 'string'};
case ts.SyntaxKind.NumberKeyword:
return {__symbolic: 'reference', name: 'number'};
case ts.SyntaxKind.BooleanKeyword:
return {__symbolic: 'reference', name: 'boolean'};
case ts.SyntaxKind.ArrayType:
const arrayTypeNode = <ts.ArrayTypeNode>node;
return {
__symbolic: 'reference',
name: 'Array',
arguments: [this.evaluateNode(arrayTypeNode.elementType)]
};
case ts.SyntaxKind.NullKeyword:
return null;
case ts.SyntaxKind.TrueKeyword:
return true;
case ts.SyntaxKind.FalseKeyword:
return false;
case ts.SyntaxKind.ParenthesizedExpression:
const parenthesizedExpression = <ts.ParenthesizedExpression>node;
return this.evaluateNode(parenthesizedExpression.expression);
case ts.SyntaxKind.TypeAssertionExpression:
const typeAssertion = <ts.TypeAssertion>node;
return this.evaluateNode(typeAssertion.expression);
case ts.SyntaxKind.PrefixUnaryExpression:
const prefixUnaryExpression = <ts.PrefixUnaryExpression>node;
const operand = this.evaluateNode(prefixUnaryExpression.operand);
if (isDefined(operand) && isPrimitive(operand)) {
switch (prefixUnaryExpression.operator) {
case ts.SyntaxKind.PlusToken:
return +operand;
case ts.SyntaxKind.MinusToken:
return -operand;
case ts.SyntaxKind.TildeToken:
return ~operand;
case ts.SyntaxKind.ExclamationToken:
return !operand;
}
}
let operatorText: string;
switch (prefixUnaryExpression.operator) {
case ts.SyntaxKind.PlusToken:
operatorText = '+';
break;
case ts.SyntaxKind.MinusToken:
operatorText = '-';
break;
case ts.SyntaxKind.TildeToken:
operatorText = '~';
break;
case ts.SyntaxKind.ExclamationToken:
operatorText = '!';
break;
default:
return undefined;
}
return {__symbolic: 'pre', operator: operatorText, operand: operand};
case ts.SyntaxKind.BinaryExpression:
const binaryExpression = <ts.BinaryExpression>node;
const left = this.evaluateNode(binaryExpression.left);
const right = this.evaluateNode(binaryExpression.right);
if (isDefined(left) && isDefined(right)) {
if (isPrimitive(left) && isPrimitive(right))
switch (binaryExpression.operatorToken.kind) {
case ts.SyntaxKind.BarBarToken:
return <any>left || <any>right;
case ts.SyntaxKind.AmpersandAmpersandToken:
return <any>left && <any>right;
case ts.SyntaxKind.AmpersandToken:
return <any>left & <any>right;
case ts.SyntaxKind.BarToken:
return <any>left | <any>right;
case ts.SyntaxKind.CaretToken:
return <any>left ^ <any>right;
case ts.SyntaxKind.EqualsEqualsToken:
return <any>left == <any>right;
case ts.SyntaxKind.ExclamationEqualsToken:
return <any>left != <any>right;
case ts.SyntaxKind.EqualsEqualsEqualsToken:
return <any>left === <any>right;
case ts.SyntaxKind.ExclamationEqualsEqualsToken:
return <any>left !== <any>right;
case ts.SyntaxKind.LessThanToken:
return <any>left < <any>right;
case ts.SyntaxKind.GreaterThanToken:
return <any>left > <any>right;
case ts.SyntaxKind.LessThanEqualsToken:
return <any>left <= <any>right;
case ts.SyntaxKind.GreaterThanEqualsToken:
return <any>left >= <any>right;
case ts.SyntaxKind.LessThanLessThanToken:
return (<any>left) << (<any>right);
case ts.SyntaxKind.GreaterThanGreaterThanToken:
return <any>left >> <any>right;
case ts.SyntaxKind.GreaterThanGreaterThanGreaterThanToken:
return <any>left >>> <any>right;
case ts.SyntaxKind.PlusToken:
return <any>left + <any>right;
case ts.SyntaxKind.MinusToken:
return <any>left - <any>right;
case ts.SyntaxKind.AsteriskToken:
return <any>left * <any>right;
case ts.SyntaxKind.SlashToken:
return <any>left / <any>right;
case ts.SyntaxKind.PercentToken:
return <any>left % <any>right;
}
return {
__symbolic: 'binop',
operator: binaryExpression.operatorToken.getText(),
left: left,
right: right
};
}
break;
case ts.SyntaxKind.FunctionExpression:
case ts.SyntaxKind.ArrowFunction:
return errorSymbol('Function call not supported', node);
}
return errorSymbol('Expression form not supported', node);
}
}