* Allows empty JWS bodies to support [RFC 8555](https://tools.ietf.org/html/rfc8555) and similar initiatives. [Pull Request 540](https://github.com/jwtk/jjwt/pull/540)
* Ensures OSGi environments can access JJWT implementation bundles (`jjwt-jackson`, `jjwt-gson`, etc) as fragments to `jjwt-api` bundle. [Pull Request 580](https://github.com/jwtk/jjwt/pull/580)
* Rejects `allowedClockSkewSeconds` values that would cause numeric overflow. [Issue 583](https://github.com/jwtk/jjwt/issues/583)
* Upgrades Jackson dependency to version `2.9.10.4` to address all known Jackson CVE vulnerabilities. [Issue 585](https://github.com/jwtk/jjwt/issues/585)
* Updates `SecretKey` algorithm name validation to allow PKCS12 KeyStore OIDs in addition to JCA Names. [Issue 588](https://github.com/jwtk/jjwt/issues/588)
* Enabled CI builds on JDK 14. [Pull Request 590](https://github.com/jwtk/jjwt/pull/590)
* Adds missing parameters type to `Maps.add()`, which removes an unchecked type warning. [Issue 591](https://github.com/jwtk/jjwt/issues/591)
* Ensures `GsonDeserializer` always uses `UTF-8` for encoding bytes to Strings. [Pull Request 592](https://github.com/jwtk/jjwt/pull/592)
* Fixes an issue when using Java 9+ `Map.of` with `JacksonDeserializer` that resulted in an `NullPointerException`.
* Fixes an issue that prevented the `jjwt-gson` .jar's seralizer/deserializer implementation from being detected automatically.
* Ensures service implementations are now loaded from the context class loader, Services.class.classLoader, and the system classloader, the first classloader with a service wins, and the others are ignored. This mimics how `Classes.forName()` works, and how JJWT attempted to auto-discover various implementations in previous versions.
* Fixes a minor error in the `Claims#getIssuedAt` JavaDoc.
* A new `JwtParserBuilder` interface has been added and is the recommended way of creating an immutable and thread-safe JwtParser instance. Mutable methods in `JwtParser` will be removed before v1.0.
A backward compatibility modules has been created using the `deprecated` classifier (`io.jsonwebtoken:jjwt-jackson:0.11.0:deprecated` and `io.jsonwebtoken:jjwt-orjson:0.11.0:deprecated`), if you are compiling against these classes directly, otherwise you will be unaffected.
#### Backwards Compatibility Warning
Due to this package move, if you are currently using one of the above four existing (pre 0.11.0) classes with `compile` scope, you must either:
1. change your code to use the newer package classes (recommended), or
1. change your build/dependency configuration to use the `deprecated` dependency classifier to use the existing classes, as follows:
// the sub field was missing or did not have a 'jsmith' value
}
```
If it is important to react to a missing vs an incorrect value, instead of catching `InvalidClaimException`, you can catch either `MissingClaimException` or `IncorrectClaimException`:
// the 'myfield' field was missing or did not have a 'myRequiredValue' value
}
```
(or, again, you could catch either MissingClaimException or IncorrectClaimException instead)
#### Body Compression
**This feature is NOT JWT specification compliant**, *but it can be very useful when you parse your own tokens*.
If your JWT body is large and you have size restrictions (for example, if embedding a JWT in a URL and the URL must be under a certain length for legacy browsers or mail user agents), you may now compress the JWT body using a `CompressionCodec`:
The default parser implementation will automatically decompress DEFLATE or GZIP compressed bodies, so you don't need to set anything on the parser - it looks like normal:
If the DEFLATE or GZIP algorithms are not sufficient for your needs, you can specify your own Compression algorithms by implementing the `CompressionCodec` interface and setting it on the parser:
You will then need to specify a `CompressionCodecResolver` on the parser, so you can inspect the `zip` header and return your custom codec when discovered:
*NOTE*: Because body compression is not JWT specification compliant, you should only enable compression if both your JWT builder and parser are JJWT versions >= 0.6.0, or if you're using another library that implements the exact same functionality. This feature is best reserved for your own use cases - where you both create and later parse the tokens. It will likely cause problems if you compressed a token and expected a 3rd party (who doesn't use JJWT) to parse the token.
### 0.5.1
- Minor [bug](https://github.com/jwtk/jjwt/issues/31) fix [release](https://github.com/jwtk/jjwt/issues?q=milestone%3A0.5.1+is%3Aclosed) that ensures correct Base64 padding in Android runtimes.
### 0.5
- Android support! Android's built-in Base64 codec will be used if JJWT detects it is running in an Android environment. Other than Base64, all other parts of JJWT were already Android-compliant. Now it is fully compliant.
- Elliptic Curve signature algorithms! `SignatureAlgorithm.ES256`, `ES384` and `ES512` are now supported.
- Super convenient key generation methods, so you don't have to worry how to do this safely:
The `generate`* methods that accept an `SignatureAlgorithm` argument know to generate a key of sufficient strength that reflects the specified algorithm strength.
Please see the full [0.5 closed issues list](https://github.com/jwtk/jjwt/issues?q=milestone%3A0.5+is%3Aclosed) for more information.
### 0.4
- [Issue 8](https://github.com/jwtk/jjwt/issues/8): Add ability to find signing key by inspecting the JWS values before verifying the signature.
This is a handy little feature. If you need to parse a signed JWT (a JWS) and you don't know which signing key was used to sign it, you can now use the new `SigningKeyResolver` concept.
A `SigningKeyresolver` can inspect the JWS header and body (Claims or String) _before_ the JWS signature is verified. By inspecting the data, you can find the key and return it, and the parser will use the returned key to validate the signature. For example:
```java
SigningKeyResolver resolver = new MySigningKeyResolver();
The signature is still validated, and the JWT instance will still not be returned if the jwt string is invalid, as expected. You just get to 'see' the JWT data for key discovery before the parser validates. Nice.
This of course requires that you put some sort of information in the JWS when you create it so that your `SigningKeyResolver` implementation can look at it later and look up the key. The *standard* way to do this is to use the JWS `kid` ('key id') field, for example:
You could of course set any other header parameter or claims parameter instead of setting `kid` if you want - that's just the default field reserved for signing key identification. If you can locate the signing key based on other information in the header or claims, you don't need to set the `kid` field - just make sure your resolver implementation knows how to look up the key.
Finally, a nice `SigningKeyResolverAdapter` is provided to allow you to write quick and simple subclasses or anonymous classes instead of having to implement the `SigningKeyResolver` interface directly. For example:
public byte[] resolveSigningKeyBytes(JwsHeader header, Claims claims) {
//inspect the header or claims, lookup and return the signing key
String keyId = header.getKeyId(); //or any other field that you need to inspect
return getSigningKey(keyId); //implement me
}})
.parseClaimsJws(compact);
```
### 0.3
- [Issue 6](https://github.com/jwtk/jjwt/issues/6): Parsing an expired Claims JWT or JWS (as determined by the `exp` claims field) will now throw an `ExpiredJwtException`.
- [Issue 7](https://github.com/jwtk/jjwt/issues/7): Parsing a premature Claims JWT or JWS (as determined by the `nbf` claims field) will now throw a `PrematureJwtException`.
### 0.2
#### More convenient Claims building
This release adds convenience methods to the `JwtBuilder` interface so you can set claims directly on the builder without having to create a separate Claims instance/builder, reducing the amount of code you have to write. For example, this:
But you couldn't easily determine if the `jwt` was a `JWT` or `JWS` instance or if the body was a `Claims` instance or a plaintext `String` without resorting to a bunch of yucky `instanceof` checks. In 0.2, we introduce the `JwtHandler` when you don't know the exact format of the compact JWT string ahead of time, and parsing convenience methods when you do.
##### JwtHandler
If you do not know the format of the compact JWT string at the time you try to parse it, you can determine what type it is after parsing by providing a `JwtHandler` instance to the `JwtParser` with the new `parse(String compactJwt, JwtHandler handler)` method. For example:
```java
T returnVal = Jwts.parser().setSigningKey(key).parse(compact, new JwtHandler<T>() {
@Override
public T onPlaintextJwt(Jwt<Header,String> jwt) {
//the JWT parsed was an unsigned plaintext JWT
//inspect it, then return an instance of T (see returnVal above)
}
@Override
public T onClaimsJwt(Jwt<Header,Claims> jwt) {
//the JWT parsed was an unsigned Claims JWT
//inspect it, then return an instance of T (see returnVal above)
}
@Override
public T onPlaintextJws(Jws<String> jws) {
//the JWT parsed was a signed plaintext JWS
//inspect it, then return an instance of T (see returnVal above)
}
@Override
public T onClaimsJws(Jws<Claims> jws) {
//the JWT parsed was a signed Claims JWS
//inspect it, then return an instance of T (see returnVal above)
}
});
```
Of course, if you know you'll only have to parse a subset of the above, you can use the `JwtHandlerAdapter` and implement only the methods you need. For example:
```java
T returnVal = Jwts.parser().setSigningKey(key).parse(plaintextJwt, new JwtHandlerAdapter<Jwt<Header,T>>() {
@Override
public T onPlaintextJws(Jws<String> jws) {
//the JWT parsed was a signed plaintext JWS
//inspect it, then return an instance of T (see returnVal above)
}
@Override
public T onClaimsJws(Jws<Claims> jws) {
//the JWT parsed was a signed Claims JWS
//inspect it, then return an instance of T (see returnVal above)
}
});
```
##### Known Type convenience parse methods
If, unlike above, you are confident of the compact string format and know which type of JWT or JWS it will produce, you can just use one of the 4 new convenience parsing methods to get exactly the type of JWT or JWS you know exists. For example: