rameshv29 05ada44c3f
Updated the folder structure and added AgentCore Observability (#139)
* updated the cognito setup, gateway creation using agentcore sdk

* added the config directory with test file

* updated the automation scripts and simplified the approach to install and test it

* updated the tool description in the target creation and updated readme file

* added agentcore observability for agentcore gateway

* updated architecture diagram

* Update observability section in README.md with more concise information

* removed old folder directory

* updated the tool description in the targets
2025-07-24 18:15:45 -07:00

107 lines
4.8 KiB
Python

import boto3
import os
agentcore_client = boto3.client(
'bedrock-agentcore-control',
region_name=os.getenv('AWS_REGION', 'us-west-2'),
endpoint_url=os.getenv('ENDPOINT_URL')
)
lambda_target_config = {
"mcp": {
"lambda": {
"lambdaArn": os.getenv('LAMBDA_ARN'),
"toolSchema": {
"inlinePayload": [
{
"name": "explain_query",
"description": "Analyzes and explains the execution plan for a SQL query to help optimize database performance. Provide the database environment (dev/prod) and the SQL query to analyze. Use action_type default value as explain_query.",
"inputSchema": {
"type": "object",
"properties": {
"environment": {
"type": "string"
},
"action_type": {
"type": "string",
"description": "The type of action to perform. Use 'explain_query' for this tool."
},
"query": {
"type": "string"
}
},
"required": ["environment","action_type","query"]
}
},
{
"name": "extract_ddl",
"description": "Extracts the DDL (Data Definition Language) for a database object. Provide the environment (dev/prod), object_type (table, view, function, etc.), object_name, and object_schema to get the creation script. Use action_type default value as extract_ddl.",
"inputSchema": {
"type": "object",
"properties": {
"environment": {
"type": "string"
},
"action_type": {
"type": "string",
"description": "The type of action to perform. Use 'extract_ddl' for this tool."
},
"object_type": {
"type": "string"
},
"object_name": {
"type": "string"
},
"object_schema": {
"type": "string"
}
},
"required": ["environment","action_type","object_type","object_name","object_schema"]
}
},
{
"name": "execute_query",
"description": "Executes a read-only SQL query safely and returns the results with performance metrics. Provide the environment (dev/prod) and the SQL query to execute. Use action_type default value as execute_query.",
"inputSchema": {
"type": "object",
"properties": {
"environment": {
"type": "string"
},
"action_type": {
"type": "string",
"description": "The type of action to perform. Use 'execute_query' for this tool."
},
"query": {
"type": "string"
}
},
"required": ["environment","action_type","query"]
}
}
]
}
}
}
}
credential_config = [
{
"credentialProviderType" : "GATEWAY_IAM_ROLE"
}
]
response = agentcore_client.create_gateway_target(
gatewayIdentifier=os.getenv('GATEWAY_IDENTIFIER'),
name=os.getenv('TARGET_NAME', 'pg-analyze-db-performance'),
description=os.getenv('TARGET_DESCRIPTION', 'PostgreSQL database performance analysis tool with query execution plan analysis, DDL extraction, and safe read-only query execution capabilities'),
credentialProviderConfigurations=credential_config,
targetConfiguration=lambda_target_config)
target_id = response['targetId']
print(f"Target ID: {target_id}")
# Create target_config.env file
with open('target_config.env', 'w') as f:
f.write(f"TARGET_ID={target_id}\n")