2015-05-27 17:57:54 -04:00
|
|
|
import {Math} from 'angular2/src/facade/math';
|
|
|
|
import {ListWrapper, List} from 'angular2/src/facade/collection';
|
2015-02-11 13:13:49 -05:00
|
|
|
|
|
|
|
export class Statistic {
|
|
|
|
static calculateCoefficientOfVariation(sample, mean) {
|
|
|
|
return Statistic.calculateStandardDeviation(sample, mean) / mean * 100;
|
|
|
|
}
|
|
|
|
|
|
|
|
static calculateMean(sample) {
|
|
|
|
var total = 0;
|
2015-05-27 17:57:54 -04:00
|
|
|
ListWrapper.forEach(sample, (x) => {total += x});
|
2015-02-11 13:13:49 -05:00
|
|
|
return total / sample.length;
|
|
|
|
}
|
|
|
|
|
|
|
|
static calculateStandardDeviation(sample, mean) {
|
|
|
|
var deviation = 0;
|
2015-05-27 17:57:54 -04:00
|
|
|
ListWrapper.forEach(sample, (x) => { deviation += Math.pow(x - mean, 2); });
|
2015-02-11 13:13:49 -05:00
|
|
|
deviation = deviation / (sample.length);
|
|
|
|
deviation = Math.sqrt(deviation);
|
|
|
|
return deviation;
|
|
|
|
}
|
|
|
|
|
2015-05-27 17:57:54 -04:00
|
|
|
static calculateRegressionSlope(xValues: List<number>, xMean: number, yValues: List<number>,
|
|
|
|
yMean: number) {
|
2015-02-11 13:13:49 -05:00
|
|
|
// See http://en.wikipedia.org/wiki/Simple_linear_regression
|
|
|
|
var dividendSum = 0;
|
|
|
|
var divisorSum = 0;
|
2015-05-27 17:57:54 -04:00
|
|
|
for (var i = 0; i < xValues.length; i++) {
|
2015-02-11 13:13:49 -05:00
|
|
|
dividendSum += (xValues[i] - xMean) * (yValues[i] - yMean);
|
|
|
|
divisorSum += Math.pow(xValues[i] - xMean, 2);
|
|
|
|
}
|
|
|
|
return dividendSum / divisorSum;
|
|
|
|
}
|
|
|
|
}
|