576 lines
24 KiB
TypeScript
Raw Normal View History

/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
import {GeneratedFile} from '@angular/compiler';
import * as ts from 'typescript';
import * as api from '../transformers/api';
import {nocollapseHack} from '../transformers/nocollapse_hack';
import {ComponentDecoratorHandler, DirectiveDecoratorHandler, InjectableDecoratorHandler, NgModuleDecoratorHandler, NoopReferencesRegistry, PipeDecoratorHandler, ReferencesRegistry} from './annotations';
import {BaseDefDecoratorHandler} from './annotations/src/base_def';
import {CycleAnalyzer, ImportGraph} from './cycles';
import {ErrorCode, ngErrorCode} from './diagnostics';
import {FlatIndexGenerator, ReferenceGraph, checkForPrivateExports, findFlatIndexEntryPoint} from './entry_point';
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
import {AbsoluteModuleStrategy, AliasGenerator, AliasStrategy, DefaultImportTracker, FileToModuleHost, FileToModuleStrategy, ImportRewriter, LocalIdentifierStrategy, LogicalProjectStrategy, ModuleResolver, NoopImportRewriter, R3SymbolsImportRewriter, Reference, ReferenceEmitter} from './imports';
import {IncrementalState} from './incremental';
import {PartialEvaluator} from './partial_evaluator';
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
import {AbsoluteFsPath, LogicalFileSystem} from './path';
import {NOOP_PERF_RECORDER, PerfRecorder, PerfTracker} from './perf';
import {TypeScriptReflectionHost} from './reflection';
import {HostResourceLoader} from './resource_loader';
import {NgModuleRouteAnalyzer, entryPointKeyFor} from './routing';
import {LocalModuleScopeRegistry, MetadataDtsModuleScopeResolver} from './scope';
import {FactoryGenerator, FactoryInfo, GeneratedShimsHostWrapper, ShimGenerator, SummaryGenerator, generatedFactoryTransform} from './shims';
refactor(ivy): obviate the Bazel component of the ivy_switch (#26550) Originally, the ivy_switch mechanism used Bazel genrules to conditionally compile one TS file or another depending on whether ngc or ngtsc was the selected compiler. This was done because we wanted to avoid importing certain modules (and thus pulling them into the build) if Ivy was on or off. This mechanism had a major drawback: ivy_switch became a bottleneck in the import graph, as it both imports from many places in the codebase and is imported by many modules in the codebase. This frequently resulted in cyclic imports which caused issues both with TS and Closure compilation. It turns out ngcc needs both code paths in the bundle to perform the switch during its operation anyway, so import switching was later abandoned. This means that there's no real reason why the ivy_switch mechanism needed to operate at the Bazel level, and for the ivy_switch file to be a bottleneck. This commit removes the Bazel-level ivy_switch mechanism, and introduces an additional TypeScript transform in ngtsc (and the pass-through tsc compiler used for testing JIT) to perform the same operation that ngcc does, and flip the switch during ngtsc compilation. This allows the ivy_switch file to be removed, and the individual switches to be located directly next to their consumers in the codebase, greatly mitigating the circular import issues and making the mechanism much easier to use. As part of this commit, the tag for marking switched variables was changed from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which flips these tags. Most variables were renamed from R3_* to SWITCH_* as well, since they're referenced mostly in render2 code. Test strategy: existing test coverage is more than sufficient - if this didn't work correctly it would break the hello world and todo apps. PR Close #26550
2018-10-17 15:44:44 -07:00
import {ivySwitchTransform} from './switch';
import {IvyCompilation, declarationTransformFactory, ivyTransformFactory} from './transform';
import {aliasTransformFactory} from './transform/src/alias';
import {TypeCheckContext, TypeCheckProgramHost} from './typecheck';
import {normalizeSeparators} from './util/src/path';
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
import {getRootDirs, isDtsPath} from './util/src/typescript';
export class NgtscProgram implements api.Program {
private tsProgram: ts.Program;
private resourceManager: HostResourceLoader;
private compilation: IvyCompilation|undefined = undefined;
private factoryToSourceInfo: Map<string, FactoryInfo>|null = null;
private sourceToFactorySymbols: Map<string, Set<string>>|null = null;
private host: ts.CompilerHost;
private _coreImportsFrom: ts.SourceFile|null|undefined = undefined;
private _importRewriter: ImportRewriter|undefined = undefined;
private _reflector: TypeScriptReflectionHost|undefined = undefined;
private _isCore: boolean|undefined = undefined;
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
private rootDirs: AbsoluteFsPath[];
private closureCompilerEnabled: boolean;
private entryPoint: ts.SourceFile|null;
private exportReferenceGraph: ReferenceGraph|null = null;
private flatIndexGenerator: FlatIndexGenerator|null = null;
private routeAnalyzer: NgModuleRouteAnalyzer|null = null;
private constructionDiagnostics: ts.Diagnostic[] = [];
private moduleResolver: ModuleResolver;
private cycleAnalyzer: CycleAnalyzer;
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
private refEmitter: ReferenceEmitter|null = null;
private fileToModuleHost: FileToModuleHost|null = null;
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
private defaultImportTracker: DefaultImportTracker;
private perfRecorder: PerfRecorder = NOOP_PERF_RECORDER;
private perfTracker: PerfTracker|null = null;
private incrementalState: IncrementalState;
constructor(
rootNames: ReadonlyArray<string>, private options: api.CompilerOptions,
host: api.CompilerHost, oldProgram?: api.Program) {
if (shouldEnablePerfTracing(options)) {
this.perfTracker = PerfTracker.zeroedToNow();
this.perfRecorder = this.perfTracker;
}
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
this.rootDirs = getRootDirs(host, options);
this.closureCompilerEnabled = !!options.annotateForClosureCompiler;
this.resourceManager = new HostResourceLoader(host, options);
const shouldGenerateShims = options.allowEmptyCodegenFiles || false;
const normalizedRootNames = rootNames.map(n => AbsoluteFsPath.from(n));
this.host = host;
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
if (host.fileNameToModuleName !== undefined) {
this.fileToModuleHost = host as FileToModuleHost;
}
let rootFiles = [...rootNames];
const generators: ShimGenerator[] = [];
if (shouldGenerateShims) {
// Summary generation.
const summaryGenerator = SummaryGenerator.forRootFiles(normalizedRootNames);
// Factory generation.
const factoryGenerator = FactoryGenerator.forRootFiles(normalizedRootNames);
const factoryFileMap = factoryGenerator.factoryFileMap;
this.factoryToSourceInfo = new Map<string, FactoryInfo>();
this.sourceToFactorySymbols = new Map<string, Set<string>>();
factoryFileMap.forEach((sourceFilePath, factoryPath) => {
const moduleSymbolNames = new Set<string>();
this.sourceToFactorySymbols !.set(sourceFilePath, moduleSymbolNames);
this.factoryToSourceInfo !.set(factoryPath, {sourceFilePath, moduleSymbolNames});
});
const factoryFileNames = Array.from(factoryFileMap.keys());
rootFiles.push(...factoryFileNames, ...summaryGenerator.getSummaryFileNames());
generators.push(summaryGenerator, factoryGenerator);
}
let entryPoint: string|null = null;
if (options.flatModuleOutFile !== undefined) {
entryPoint = findFlatIndexEntryPoint(normalizedRootNames);
if (entryPoint === null) {
// This error message talks specifically about having a single .ts file in "files". However
// the actual logic is a bit more permissive. If a single file exists, that will be taken,
// otherwise the highest level (shortest path) "index.ts" file will be used as the flat
// module entry point instead. If neither of these conditions apply, the error below is
// given.
//
// The user is not informed about the "index.ts" option as this behavior is deprecated -
// an explicit entrypoint should always be specified.
this.constructionDiagnostics.push({
category: ts.DiagnosticCategory.Error,
code: ngErrorCode(ErrorCode.CONFIG_FLAT_MODULE_NO_INDEX),
file: undefined,
start: undefined,
length: undefined,
messageText:
'Angular compiler option "flatModuleOutFile" requires one and only one .ts file in the "files" field.',
});
} else {
const flatModuleId = options.flatModuleId || null;
const flatModuleOutFile = normalizeSeparators(options.flatModuleOutFile);
this.flatIndexGenerator =
new FlatIndexGenerator(entryPoint, flatModuleOutFile, flatModuleId);
generators.push(this.flatIndexGenerator);
rootFiles.push(this.flatIndexGenerator.flatIndexPath);
}
}
if (generators.length > 0) {
this.host = new GeneratedShimsHostWrapper(host, generators);
}
this.tsProgram =
ts.createProgram(rootFiles, options, this.host, oldProgram && oldProgram.getTsProgram());
this.entryPoint = entryPoint !== null ? this.tsProgram.getSourceFile(entryPoint) || null : null;
this.moduleResolver = new ModuleResolver(this.tsProgram, options, this.host);
this.cycleAnalyzer = new CycleAnalyzer(new ImportGraph(this.moduleResolver));
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
this.defaultImportTracker = new DefaultImportTracker();
if (oldProgram === undefined) {
this.incrementalState = IncrementalState.fresh();
} else {
const oldNgtscProgram = oldProgram as NgtscProgram;
this.incrementalState = IncrementalState.reconcile(
oldNgtscProgram.incrementalState, oldNgtscProgram.tsProgram, this.tsProgram);
}
}
getTsProgram(): ts.Program { return this.tsProgram; }
getTsOptionDiagnostics(cancellationToken?: ts.CancellationToken|
undefined): ReadonlyArray<ts.Diagnostic> {
return this.tsProgram.getOptionsDiagnostics(cancellationToken);
}
getNgOptionDiagnostics(cancellationToken?: ts.CancellationToken|
undefined): ReadonlyArray<ts.Diagnostic|api.Diagnostic> {
return this.constructionDiagnostics;
}
getTsSyntacticDiagnostics(
sourceFile?: ts.SourceFile|undefined,
cancellationToken?: ts.CancellationToken|undefined): ReadonlyArray<ts.Diagnostic> {
return this.tsProgram.getSyntacticDiagnostics(sourceFile, cancellationToken);
}
getNgStructuralDiagnostics(cancellationToken?: ts.CancellationToken|
undefined): ReadonlyArray<api.Diagnostic> {
return [];
}
getTsSemanticDiagnostics(
sourceFile?: ts.SourceFile|undefined,
cancellationToken?: ts.CancellationToken|undefined): ReadonlyArray<ts.Diagnostic> {
return this.tsProgram.getSemanticDiagnostics(sourceFile, cancellationToken);
}
getNgSemanticDiagnostics(
fileName?: string|undefined, cancellationToken?: ts.CancellationToken|
undefined): ReadonlyArray<ts.Diagnostic|api.Diagnostic> {
const compilation = this.ensureAnalyzed();
const diagnostics = [...compilation.diagnostics];
if (!!this.options.fullTemplateTypeCheck) {
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
const ctx = new TypeCheckContext(this.refEmitter !);
compilation.typeCheck(ctx);
diagnostics.push(...this.compileTypeCheckProgram(ctx));
}
if (this.entryPoint !== null && this.exportReferenceGraph !== null) {
diagnostics.push(...checkForPrivateExports(
this.entryPoint, this.tsProgram.getTypeChecker(), this.exportReferenceGraph));
}
return diagnostics;
}
async loadNgStructureAsync(): Promise<void> {
if (this.compilation === undefined) {
this.compilation = this.makeCompilation();
}
const analyzeSpan = this.perfRecorder.start('analyze');
await Promise.all(this.tsProgram.getSourceFiles()
.filter(file => !file.fileName.endsWith('.d.ts'))
.map(file => {
const analyzeFileSpan = this.perfRecorder.start('analyzeFile', file);
let analysisPromise = this.compilation !.analyzeAsync(file);
if (analysisPromise === undefined) {
this.perfRecorder.stop(analyzeFileSpan);
} else if (this.perfRecorder.enabled) {
analysisPromise = analysisPromise.then(
() => this.perfRecorder.stop(analyzeFileSpan));
}
return analysisPromise;
})
.filter((result): result is Promise<void> => result !== undefined));
this.perfRecorder.stop(analyzeSpan);
this.compilation.resolve();
}
listLazyRoutes(entryRoute?: string|undefined): api.LazyRoute[] {
if (entryRoute) {
// Note:
// This resolution step is here to match the implementation of the old `AotCompilerHost` (see
// https://github.com/angular/angular/blob/50732e156/packages/compiler-cli/src/transformers/compiler_host.ts#L175-L188).
//
// `@angular/cli` will always call this API with an absolute path, so the resolution step is
// not necessary, but keeping it backwards compatible in case someone else is using the API.
// Relative entry paths are disallowed.
if (entryRoute.startsWith('.')) {
throw new Error(
`Failed to list lazy routes: Resolution of relative paths (${entryRoute}) is not supported.`);
}
// Non-relative entry paths fall into one of the following categories:
// - Absolute system paths (e.g. `/foo/bar/my-project/my-module`), which are unaffected by the
// logic below.
// - Paths to enternal modules (e.g. `some-lib`).
// - Paths mapped to directories in `tsconfig.json` (e.g. `shared/my-module`).
// (See https://www.typescriptlang.org/docs/handbook/module-resolution.html#path-mapping.)
//
// In all cases above, the `containingFile` argument is ignored, so we can just take the first
// of the root files.
const containingFile = this.tsProgram.getRootFileNames()[0];
const [entryPath, moduleName] = entryRoute.split('#');
const resolved = ts.resolveModuleName(entryPath, containingFile, this.options, this.host);
if (resolved.resolvedModule) {
entryRoute = entryPointKeyFor(resolved.resolvedModule.resolvedFileName, moduleName);
}
}
this.ensureAnalyzed();
return this.routeAnalyzer !.listLazyRoutes(entryRoute);
}
getLibrarySummaries(): Map<string, api.LibrarySummary> {
throw new Error('Method not implemented.');
}
getEmittedGeneratedFiles(): Map<string, GeneratedFile> {
throw new Error('Method not implemented.');
}
getEmittedSourceFiles(): Map<string, ts.SourceFile> {
throw new Error('Method not implemented.');
}
private ensureAnalyzed(): IvyCompilation {
if (this.compilation === undefined) {
const analyzeSpan = this.perfRecorder.start('analyze');
this.compilation = this.makeCompilation();
this.tsProgram.getSourceFiles()
.filter(file => !file.fileName.endsWith('.d.ts'))
.forEach(file => {
const analyzeFileSpan = this.perfRecorder.start('analyzeFile', file);
this.compilation !.analyzeSync(file);
this.perfRecorder.stop(analyzeFileSpan);
});
this.perfRecorder.stop(analyzeSpan);
this.compilation.resolve();
}
return this.compilation;
}
emit(opts?: {
emitFlags?: api.EmitFlags,
cancellationToken?: ts.CancellationToken,
customTransformers?: api.CustomTransformers,
emitCallback?: api.TsEmitCallback,
mergeEmitResultsCallback?: api.TsMergeEmitResultsCallback
}): ts.EmitResult {
const emitCallback = opts && opts.emitCallback || defaultEmitCallback;
const compilation = this.ensureAnalyzed();
const writeFile: ts.WriteFileCallback =
(fileName: string, data: string, writeByteOrderMark: boolean,
onError: ((message: string) => void) | undefined,
sourceFiles: ReadonlyArray<ts.SourceFile>| undefined) => {
if (this.closureCompilerEnabled && fileName.endsWith('.js')) {
data = nocollapseHack(data);
}
this.host.writeFile(fileName, data, writeByteOrderMark, onError, sourceFiles);
};
const customTransforms = opts && opts.customTransformers;
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
const beforeTransforms = [
ivyTransformFactory(
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
compilation, this.reflector, this.importRewriter, this.defaultImportTracker, this.isCore,
this.closureCompilerEnabled),
aliasTransformFactory(compilation.exportStatements) as ts.TransformerFactory<ts.SourceFile>,
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
this.defaultImportTracker.importPreservingTransformer(),
];
const afterDeclarationsTransforms = [
declarationTransformFactory(compilation),
];
if (this.factoryToSourceInfo !== null) {
beforeTransforms.push(
generatedFactoryTransform(this.factoryToSourceInfo, this.importRewriter));
}
beforeTransforms.push(ivySwitchTransform);
if (customTransforms && customTransforms.beforeTs) {
beforeTransforms.push(...customTransforms.beforeTs);
refactor(ivy): obviate the Bazel component of the ivy_switch (#26550) Originally, the ivy_switch mechanism used Bazel genrules to conditionally compile one TS file or another depending on whether ngc or ngtsc was the selected compiler. This was done because we wanted to avoid importing certain modules (and thus pulling them into the build) if Ivy was on or off. This mechanism had a major drawback: ivy_switch became a bottleneck in the import graph, as it both imports from many places in the codebase and is imported by many modules in the codebase. This frequently resulted in cyclic imports which caused issues both with TS and Closure compilation. It turns out ngcc needs both code paths in the bundle to perform the switch during its operation anyway, so import switching was later abandoned. This means that there's no real reason why the ivy_switch mechanism needed to operate at the Bazel level, and for the ivy_switch file to be a bottleneck. This commit removes the Bazel-level ivy_switch mechanism, and introduces an additional TypeScript transform in ngtsc (and the pass-through tsc compiler used for testing JIT) to perform the same operation that ngcc does, and flip the switch during ngtsc compilation. This allows the ivy_switch file to be removed, and the individual switches to be located directly next to their consumers in the codebase, greatly mitigating the circular import issues and making the mechanism much easier to use. As part of this commit, the tag for marking switched variables was changed from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which flips these tags. Most variables were renamed from R3_* to SWITCH_* as well, since they're referenced mostly in render2 code. Test strategy: existing test coverage is more than sufficient - if this didn't work correctly it would break the hello world and todo apps. PR Close #26550
2018-10-17 15:44:44 -07:00
}
const emitSpan = this.perfRecorder.start('emit');
const emitResults: ts.EmitResult[] = [];
for (const targetSourceFile of this.tsProgram.getSourceFiles()) {
if (targetSourceFile.isDeclarationFile) {
continue;
}
if (this.incrementalState.safeToSkipEmit(targetSourceFile)) {
continue;
}
const fileEmitSpan = this.perfRecorder.start('emitFile', targetSourceFile);
emitResults.push(emitCallback({
targetSourceFile,
program: this.tsProgram,
host: this.host,
options: this.options,
emitOnlyDtsFiles: false, writeFile,
customTransformers: {
before: beforeTransforms,
after: customTransforms && customTransforms.afterTs,
afterDeclarations: afterDeclarationsTransforms,
},
}));
this.perfRecorder.stop(fileEmitSpan);
}
this.perfRecorder.stop(emitSpan);
if (this.perfTracker !== null && this.options.tracePerformance !== undefined) {
this.perfTracker.serializeToFile(this.options.tracePerformance, this.host);
}
// Run the emit, including a custom transformer that will downlevel the Ivy decorators in code.
return ((opts && opts.mergeEmitResultsCallback) || mergeEmitResults)(emitResults);
}
private compileTypeCheckProgram(ctx: TypeCheckContext): ReadonlyArray<ts.Diagnostic> {
const host = new TypeCheckProgramHost(this.tsProgram, this.host, ctx);
const auxProgram = ts.createProgram({
host,
rootNames: this.tsProgram.getRootFileNames(),
oldProgram: this.tsProgram,
options: this.options,
});
return auxProgram.getSemanticDiagnostics();
}
private makeCompilation(): IvyCompilation {
const checker = this.tsProgram.getTypeChecker();
let aliasGenerator: AliasGenerator|null = null;
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
// Construct the ReferenceEmitter.
if (this.fileToModuleHost === null || !this.options._useHostForImportGeneration) {
// The CompilerHost doesn't have fileNameToModuleName, so build an NPM-centric reference
// resolution strategy.
this.refEmitter = new ReferenceEmitter([
// First, try to use local identifiers if available.
new LocalIdentifierStrategy(),
// Next, attempt to use an absolute import.
new AbsoluteModuleStrategy(this.tsProgram, checker, this.options, this.host),
// Finally, check if the reference is being written into a file within the project's logical
// file system, and use a relative import if so. If this fails, ReferenceEmitter will throw
// an error.
new LogicalProjectStrategy(checker, new LogicalFileSystem(this.rootDirs)),
]);
} else {
// The CompilerHost supports fileNameToModuleName, so use that to emit imports.
this.refEmitter = new ReferenceEmitter([
// First, try to use local identifiers if available.
new LocalIdentifierStrategy(),
// Then use aliased references (this is a workaround to StrictDeps checks).
new AliasStrategy(),
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
// Then use fileNameToModuleName to emit imports.
new FileToModuleStrategy(checker, this.fileToModuleHost),
]);
aliasGenerator = new AliasGenerator(this.fileToModuleHost);
feat(ivy): use fileNameToModuleName to emit imports when it's available (#28523) The ultimate goal of this commit is to make use of fileNameToModuleName to get the module specifier to use when generating an import, when that API is available in the CompilerHost that ngtsc is created with. As part of getting there, the way in which ngtsc tracks references and generates import module specifiers is refactored considerably. References are tracked with the Reference class, and previously ngtsc had several different kinds of Reference. An AbsoluteReference represented a declaration which needed to be imported via an absolute module specifier tracked in the AbsoluteReference, and a RelativeReference represented a declaration from the local program, imported via relative path or referred to directly by identifier if possible. Thus, how to refer to a particular declaration was encoded into the Reference type _at the time of creation of the Reference_. This commit refactors that logic and reduces Reference to a single class with no subclasses. A Reference represents a node being referenced, plus context about how the node was located. This context includes a "bestGuessOwningModule", the compiler's best guess at which absolute module specifier has defined this reference. For example, if the compiler arrives at the declaration of CommonModule via an import to @angular/common, then any references obtained from CommonModule (e.g. NgIf) will also be considered to be owned by @angular/common. A ReferenceEmitter class and accompanying ReferenceEmitStrategy interface are introduced. To produce an Expression referring to a given Reference'd node, the ReferenceEmitter consults a sequence of ReferenceEmitStrategy implementations. Several different strategies are defined: - LocalIdentifierStrategy: use local ts.Identifiers if available. - AbsoluteModuleStrategy: if the Reference has a bestGuessOwningModule, import the node via an absolute import from that module specifier. - LogicalProjectStrategy: if the Reference is in the logical project (is under the project rootDirs), import the node via a relative import. - FileToModuleStrategy: use a FileToModuleHost to generate the module specifier by which to import the node. Depending on the availability of fileNameToModuleName in the CompilerHost, then, a different collection of these strategies is used for compilation. PR Close #28523
2019-02-01 17:24:21 -08:00
}
const evaluator = new PartialEvaluator(this.reflector, checker);
const depScopeReader =
new MetadataDtsModuleScopeResolver(checker, this.reflector, aliasGenerator);
const scopeRegistry =
new LocalModuleScopeRegistry(depScopeReader, this.refEmitter, aliasGenerator);
// If a flat module entrypoint was specified, then track references via a `ReferenceGraph` in
// order to produce proper diagnostics for incorrectly exported directives/pipes/etc. If there
// is no flat module entrypoint then don't pay the cost of tracking references.
let referencesRegistry: ReferencesRegistry;
if (this.entryPoint !== null) {
this.exportReferenceGraph = new ReferenceGraph();
referencesRegistry = new ReferenceGraphAdapter(this.exportReferenceGraph);
} else {
referencesRegistry = new NoopReferencesRegistry();
}
this.routeAnalyzer = new NgModuleRouteAnalyzer(this.moduleResolver, evaluator);
// Set up the IvyCompilation, which manages state for the Ivy transformer.
const handlers = [
new BaseDefDecoratorHandler(this.reflector, evaluator, this.isCore),
new ComponentDecoratorHandler(
this.reflector, evaluator, scopeRegistry, this.isCore, this.resourceManager,
this.rootDirs, this.options.preserveWhitespaces || false,
this.options.i18nUseExternalIds !== false, this.moduleResolver, this.cycleAnalyzer,
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
this.refEmitter, this.defaultImportTracker),
new DirectiveDecoratorHandler(
this.reflector, evaluator, scopeRegistry, this.defaultImportTracker, this.isCore),
new InjectableDecoratorHandler(
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
this.reflector, this.defaultImportTracker, this.isCore,
this.options.strictInjectionParameters || false),
new NgModuleDecoratorHandler(
this.reflector, evaluator, scopeRegistry, referencesRegistry, this.isCore,
this.routeAnalyzer, this.refEmitter, this.defaultImportTracker),
fix(ivy): reuse default imports in type-to-value references (#29266) This fixes an issue with commit b6f6b117. In this commit, default imports processed in a type-to-value conversion were recorded as non-local imports with a '*' name, and the ImportManager generated a new default import for them. When transpiled to ES2015 modules, this resulted in the following correct code: import i3 from './module'; // somewhere in the file, a value reference of i3: {type: i3} However, when the AST with this synthetic import and reference was transpiled to non-ES2015 modules (for example, to commonjs) an issue appeared: var module_1 = require('./module'); {type: i3} TypeScript renames the imported identifier from i3 to module_1, but doesn't substitute later references to i3. This is because the import and reference are both synthetic, and never went through the TypeScript AST step of "binding" which associates the reference to its import. This association is important during emit when the identifiers might change. Synthetic (transformer-added) imports will never be bound properly. The only possible solution is to reuse the user's original import and the identifier from it, which will be properly downleveled. The issue with this approach (which prompted the fix in b6f6b117) is that if the import is only used in a type position, TypeScript will mark it for deletion in the generated JS, even though additional non-type usages are added in the transformer. This again would leave a dangling import. To work around this, it's necessary for the compiler to keep track of identifiers that it emits which came from default imports, and tell TS not to remove those imports during transpilation. A `DefaultImportTracker` class is implemented to perform this tracking. It implements a `DefaultImportRecorder` interface, which is used to record two significant pieces of information: * when a WrappedNodeExpr is generated which refers to a default imported value, the ts.Identifier is associated to the ts.ImportDeclaration via the recorder. * when that WrappedNodeExpr is later emitted as part of the statement / expression translators, the fact that the ts.Identifier was used is also recorded. Combined, this tracking gives the `DefaultImportTracker` enough information to implement another TS transformer, which can recognize default imports which were used in the output of the Ivy transform and can prevent them from being elided. This is done by creating a new ts.ImportDeclaration for the imports with the same ts.ImportClause. A test verifies that this works. PR Close #29266
2019-03-11 16:54:07 -07:00
new PipeDecoratorHandler(
this.reflector, evaluator, scopeRegistry, this.defaultImportTracker, this.isCore),
];
return new IvyCompilation(
handlers, checker, this.reflector, this.importRewriter, this.incrementalState,
this.perfRecorder, this.sourceToFactorySymbols);
}
private get reflector(): TypeScriptReflectionHost {
if (this._reflector === undefined) {
this._reflector = new TypeScriptReflectionHost(this.tsProgram.getTypeChecker());
}
return this._reflector;
}
private get coreImportsFrom(): ts.SourceFile|null {
if (this._coreImportsFrom === undefined) {
this._coreImportsFrom = this.isCore && getR3SymbolsFile(this.tsProgram) || null;
}
return this._coreImportsFrom;
}
private get isCore(): boolean {
if (this._isCore === undefined) {
this._isCore = isAngularCorePackage(this.tsProgram);
}
return this._isCore;
}
private get importRewriter(): ImportRewriter {
if (this._importRewriter === undefined) {
const coreImportsFrom = this.coreImportsFrom;
this._importRewriter = coreImportsFrom !== null ?
new R3SymbolsImportRewriter(coreImportsFrom.fileName) :
new NoopImportRewriter();
}
return this._importRewriter;
}
}
const defaultEmitCallback: api.TsEmitCallback =
({program, targetSourceFile, writeFile, cancellationToken, emitOnlyDtsFiles,
customTransformers}) =>
program.emit(
targetSourceFile, writeFile, cancellationToken, emitOnlyDtsFiles, customTransformers);
function mergeEmitResults(emitResults: ts.EmitResult[]): ts.EmitResult {
const diagnostics: ts.Diagnostic[] = [];
let emitSkipped = false;
const emittedFiles: string[] = [];
for (const er of emitResults) {
diagnostics.push(...er.diagnostics);
emitSkipped = emitSkipped || er.emitSkipped;
emittedFiles.push(...(er.emittedFiles || []));
}
return {diagnostics, emitSkipped, emittedFiles};
}
/**
* Find the 'r3_symbols.ts' file in the given `Program`, or return `null` if it wasn't there.
*/
function getR3SymbolsFile(program: ts.Program): ts.SourceFile|null {
return program.getSourceFiles().find(file => file.fileName.indexOf('r3_symbols.ts') >= 0) || null;
}
/**
* Determine if the given `Program` is @angular/core.
*/
function isAngularCorePackage(program: ts.Program): boolean {
// Look for its_just_angular.ts somewhere in the program.
const r3Symbols = getR3SymbolsFile(program);
if (r3Symbols === null) {
return false;
}
// Look for the constant ITS_JUST_ANGULAR in that file.
return r3Symbols.statements.some(stmt => {
// The statement must be a variable declaration statement.
if (!ts.isVariableStatement(stmt)) {
return false;
}
// It must be exported.
if (stmt.modifiers === undefined ||
!stmt.modifiers.some(mod => mod.kind === ts.SyntaxKind.ExportKeyword)) {
return false;
}
// It must declare ITS_JUST_ANGULAR.
return stmt.declarationList.declarations.some(decl => {
// The declaration must match the name.
if (!ts.isIdentifier(decl.name) || decl.name.text !== 'ITS_JUST_ANGULAR') {
return false;
}
// It must initialize the variable to true.
if (decl.initializer === undefined || decl.initializer.kind !== ts.SyntaxKind.TrueKeyword) {
return false;
}
// This definition matches.
return true;
});
});
}
export class ReferenceGraphAdapter implements ReferencesRegistry {
constructor(private graph: ReferenceGraph) {}
add(source: ts.Declaration, ...references: Reference<ts.Declaration>[]): void {
for (const {node} of references) {
let sourceFile = node.getSourceFile();
if (sourceFile === undefined) {
sourceFile = ts.getOriginalNode(node).getSourceFile();
}
// Only record local references (not references into .d.ts files).
if (sourceFile === undefined || !isDtsPath(sourceFile.fileName)) {
this.graph.add(source, node);
}
}
}
}
function shouldEnablePerfTracing(options: api.CompilerOptions): boolean {
return options.tracePerformance !== undefined;
}