61 lines
2.3 KiB
TypeScript
Raw Normal View History

/**
* @license
* Copyright Google Inc. All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
refactor(ivy): obviate the Bazel component of the ivy_switch (#26550) Originally, the ivy_switch mechanism used Bazel genrules to conditionally compile one TS file or another depending on whether ngc or ngtsc was the selected compiler. This was done because we wanted to avoid importing certain modules (and thus pulling them into the build) if Ivy was on or off. This mechanism had a major drawback: ivy_switch became a bottleneck in the import graph, as it both imports from many places in the codebase and is imported by many modules in the codebase. This frequently resulted in cyclic imports which caused issues both with TS and Closure compilation. It turns out ngcc needs both code paths in the bundle to perform the switch during its operation anyway, so import switching was later abandoned. This means that there's no real reason why the ivy_switch mechanism needed to operate at the Bazel level, and for the ivy_switch file to be a bottleneck. This commit removes the Bazel-level ivy_switch mechanism, and introduces an additional TypeScript transform in ngtsc (and the pass-through tsc compiler used for testing JIT) to perform the same operation that ngcc does, and flip the switch during ngtsc compilation. This allows the ivy_switch file to be removed, and the individual switches to be located directly next to their consumers in the codebase, greatly mitigating the circular import issues and making the mechanism much easier to use. As part of this commit, the tag for marking switched variables was changed from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which flips these tags. Most variables were renamed from R3_* to SWITCH_* as well, since they're referenced mostly in render2 code. Test strategy: existing test coverage is more than sufficient - if this didn't work correctly it would break the hello world and todo apps. PR Close #26550
2018-10-17 15:44:44 -07:00
import {injectElementRef as render3InjectElementRef} from '../render3/view_engine_compatibility';
import {noop} from '../util/noop';
/**
* A wrapper around a native element inside of a View.
*
* An `ElementRef` is backed by a render-specific element. In the browser, this is usually a DOM
* element.
*
* @security Permitting direct access to the DOM can make your application more vulnerable to
* XSS attacks. Carefully review any use of `ElementRef` in your code. For more detail, see the
* [Security Guide](http://g.co/ng/security).
*
* @publicApi
*/
// Note: We don't expose things like `Injector`, `ViewContainer`, ... here,
// i.e. users have to ask for what they need. With that, we can build better analysis tools
// and could do better codegen in the future.
export class ElementRef<T = any> {
/**
* The underlying native element or `null` if direct access to native elements is not supported
* (e.g. when the application runs in a web worker).
*
* <div class="callout is-critical">
* <header>Use with caution</header>
* <p>
* Use this API as the last resort when direct access to DOM is needed. Use templating and
* data-binding provided by Angular instead. Alternatively you can take a look at {@link
* Renderer2}
* which provides API that can safely be used even when direct access to native elements is not
* supported.
* </p>
* <p>
* Relying on direct DOM access creates tight coupling between your application and rendering
* layers which will make it impossible to separate the two and deploy your application into a
* web worker.
* </p>
* </div>
*
*/
public nativeElement: T;
constructor(nativeElement: T) { this.nativeElement = nativeElement; }
/** @internal */
refactor(ivy): obviate the Bazel component of the ivy_switch (#26550) Originally, the ivy_switch mechanism used Bazel genrules to conditionally compile one TS file or another depending on whether ngc or ngtsc was the selected compiler. This was done because we wanted to avoid importing certain modules (and thus pulling them into the build) if Ivy was on or off. This mechanism had a major drawback: ivy_switch became a bottleneck in the import graph, as it both imports from many places in the codebase and is imported by many modules in the codebase. This frequently resulted in cyclic imports which caused issues both with TS and Closure compilation. It turns out ngcc needs both code paths in the bundle to perform the switch during its operation anyway, so import switching was later abandoned. This means that there's no real reason why the ivy_switch mechanism needed to operate at the Bazel level, and for the ivy_switch file to be a bottleneck. This commit removes the Bazel-level ivy_switch mechanism, and introduces an additional TypeScript transform in ngtsc (and the pass-through tsc compiler used for testing JIT) to perform the same operation that ngcc does, and flip the switch during ngtsc compilation. This allows the ivy_switch file to be removed, and the individual switches to be located directly next to their consumers in the codebase, greatly mitigating the circular import issues and making the mechanism much easier to use. As part of this commit, the tag for marking switched variables was changed from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which flips these tags. Most variables were renamed from R3_* to SWITCH_* as well, since they're referenced mostly in render2 code. Test strategy: existing test coverage is more than sufficient - if this didn't work correctly it would break the hello world and todo apps. PR Close #26550
2018-10-17 15:44:44 -07:00
static __NG_ELEMENT_ID__: () => ElementRef = () => SWITCH_ELEMENT_REF_FACTORY(ElementRef);
}
refactor(ivy): obviate the Bazel component of the ivy_switch (#26550) Originally, the ivy_switch mechanism used Bazel genrules to conditionally compile one TS file or another depending on whether ngc or ngtsc was the selected compiler. This was done because we wanted to avoid importing certain modules (and thus pulling them into the build) if Ivy was on or off. This mechanism had a major drawback: ivy_switch became a bottleneck in the import graph, as it both imports from many places in the codebase and is imported by many modules in the codebase. This frequently resulted in cyclic imports which caused issues both with TS and Closure compilation. It turns out ngcc needs both code paths in the bundle to perform the switch during its operation anyway, so import switching was later abandoned. This means that there's no real reason why the ivy_switch mechanism needed to operate at the Bazel level, and for the ivy_switch file to be a bottleneck. This commit removes the Bazel-level ivy_switch mechanism, and introduces an additional TypeScript transform in ngtsc (and the pass-through tsc compiler used for testing JIT) to perform the same operation that ngcc does, and flip the switch during ngtsc compilation. This allows the ivy_switch file to be removed, and the individual switches to be located directly next to their consumers in the codebase, greatly mitigating the circular import issues and making the mechanism much easier to use. As part of this commit, the tag for marking switched variables was changed from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which flips these tags. Most variables were renamed from R3_* to SWITCH_* as well, since they're referenced mostly in render2 code. Test strategy: existing test coverage is more than sufficient - if this didn't work correctly it would break the hello world and todo apps. PR Close #26550
2018-10-17 15:44:44 -07:00
export const SWITCH_ELEMENT_REF_FACTORY__POST_R3__ = render3InjectElementRef;
const SWITCH_ELEMENT_REF_FACTORY__PRE_R3__ = noop;
const SWITCH_ELEMENT_REF_FACTORY: typeof render3InjectElementRef =
SWITCH_ELEMENT_REF_FACTORY__PRE_R3__;