angular-docs-cn/packages/zone.js/lib/zone.ts

1442 lines
53 KiB
TypeScript
Raw Normal View History

/**
* @license
* Copyright Google LLC All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
/**
* Suppress closure compiler errors about unknown 'global' variable
* @fileoverview
* @suppress {undefinedVars}
*/
/**
* Zone is a mechanism for intercepting and keeping track of asynchronous work.
*
* A Zone is a global object which is configured with rules about how to intercept and keep track
* of the asynchronous callbacks. Zone has these responsibilities:
*
* 1. Intercept asynchronous task scheduling
* 2. Wrap callbacks for error-handling and zone tracking across async operations.
* 3. Provide a way to attach data to zones
* 4. Provide a context specific last frame error handling
* 5. (Intercept blocking methods)
*
* A zone by itself does not do anything, instead it relies on some other code to route existing
* platform API through it. (The zone library ships with code which monkey patches all of the
* browsers's asynchronous API and redirects them through the zone for interception.)
*
* In its simplest form a zone allows one to intercept the scheduling and calling of asynchronous
* operations, and execute additional code before as well as after the asynchronous task. The rules
* of interception are configured using [ZoneConfig]. There can be many different zone instances in
* a system, but only one zone is active at any given time which can be retrieved using
* [Zone#current].
*
*
*
* ## Callback Wrapping
*
* An important aspect of the zones is that they should persist across asynchronous operations. To
* achieve this, when a future work is scheduled through async API, it is necessary to capture, and
* subsequently restore the current zone. For example if a code is running in zone `b` and it
* invokes `setTimeout` to scheduleTask work later, the `setTimeout` method needs to 1) capture the
* current zone and 2) wrap the `wrapCallback` in code which will restore the current zone `b` once
* the wrapCallback executes. In this way the rules which govern the current code are preserved in
* all future asynchronous tasks. There could be a different zone `c` which has different rules and
* is associated with different asynchronous tasks. As these tasks are processed, each asynchronous
* wrapCallback correctly restores the correct zone, as well as preserves the zone for future
* asynchronous callbacks.
*
* Example: Suppose a browser page consist of application code as well as third-party
* advertisement code. (These two code bases are independent, developed by different mutually
* unaware developers.) The application code may be interested in doing global error handling and
* so it configures the `app` zone to send all of the errors to the server for analysis, and then
* executes the application in the `app` zone. The advertising code is interested in the same
* error processing but it needs to send the errors to a different third-party. So it creates the
* `ads` zone with a different error handler. Now both advertising as well as application code
* create many asynchronous operations, but the [Zone] will ensure that all of the asynchronous
* operations created from the application code will execute in `app` zone with its error
* handler and all of the advertisement code will execute in the `ads` zone with its error handler.
* This will not only work for the async operations created directly, but also for all subsequent
* asynchronous operations.
*
* If you think of chain of asynchronous operations as a thread of execution (bit of a stretch)
* then [Zone#current] will act as a thread local variable.
*
*
*
* ## Asynchronous operation scheduling
*
* In addition to wrapping the callbacks to restore the zone, all operations which cause a
* scheduling of work for later are routed through the current zone which is allowed to intercept
* them by adding work before or after the wrapCallback as well as using different means of
* achieving the request. (Useful for unit testing, or tracking of requests). In some instances
* such as `setTimeout` the wrapping of the wrapCallback and scheduling is done in the same
* wrapCallback, but there are other examples such as `Promises` where the `then` wrapCallback is
* wrapped, but the execution of `then` is triggered by `Promise` scheduling `resolve` work.
*
* Fundamentally there are three kinds of tasks which can be scheduled:
*
* 1. [MicroTask] used for doing work right after the current task. This is non-cancelable which is
* guaranteed to run exactly once and immediately.
* 2. [MacroTask] used for doing work later. Such as `setTimeout`. This is typically cancelable
* which is guaranteed to execute at least once after some well understood delay.
* 3. [EventTask] used for listening on some future event. This may execute zero or more times, with
* an unknown delay.
*
* Each asynchronous API is modeled and routed through one of these APIs.
*
*
* ### [MicroTask]
*
* [MicroTask]s represent work which will be done in current VM turn as soon as possible, before VM
* yielding.
*
*
* ### [MacroTask]
*
* [MacroTask]s represent work which will be done after some delay. (Sometimes the delay is
* approximate such as on next available animation frame). Typically these methods include:
* `setTimeout`, `setImmediate`, `setInterval`, `requestAnimationFrame`, and all browser specific
* variants.
*
*
* ### [EventTask]
*
* [EventTask]s represent a request to create a listener on an event. Unlike the other task
* events they may never be executed, but typically execute more than once. There is no queue of
* events, rather their callbacks are unpredictable both in order and time.
*
*
* ## Global Error Handling
*
*
* ## Composability
*
* Zones can be composed together through [Zone.fork()]. A child zone may create its own set of
* rules. A child zone is expected to either:
*
* 1. Delegate the interception to a parent zone, and optionally add before and after wrapCallback
* hooks.
* 2. Process the request itself without delegation.
*
* Composability allows zones to keep their concerns clean. For example a top most zone may choose
* to handle error handling, while child zones may choose to do user action tracking.
*
*
* ## Root Zone
*
* At the start the browser will run in a special root zone, which is configured to behave exactly
* like the platform, making any existing code which is not zone-aware behave as expected. All
* zones are children of the root zone.
*
*/
interface Zone {
/**
*
* @returns {Zone} The parent Zone.
*/
parent: Zone|null;
/**
* @returns {string} The Zone name (useful for debugging)
*/
name: string;
/**
* Returns a value associated with the `key`.
*
* If the current zone does not have a key, the request is delegated to the parent zone. Use
* [ZoneSpec.properties] to configure the set of properties associated with the current zone.
*
* @param key The key to retrieve.
* @returns {any} The value for the key, or `undefined` if not found.
*/
get(key: string): any;
/**
* Returns a Zone which defines a `key`.
*
* Recursively search the parent Zone until a Zone which has a property `key` is found.
*
* @param key The key to use for identification of the returned zone.
* @returns {Zone} The Zone which defines the `key`, `null` if not found.
*/
getZoneWith(key: string): Zone|null;
/**
* Used to create a child zone.
*
* @param zoneSpec A set of rules which the child zone should follow.
* @returns {Zone} A new child zone.
*/
fork(zoneSpec: ZoneSpec): Zone;
/**
* Wraps a callback function in a new function which will properly restore the current zone upon
* invocation.
*
* The wrapped function will properly forward `this` as well as `arguments` to the `callback`.
*
* Before the function is wrapped the zone can intercept the `callback` by declaring
* [ZoneSpec.onIntercept].
*
* @param callback the function which will be wrapped in the zone.
* @param source A unique debug location of the API being wrapped.
* @returns {function(): *} A function which will invoke the `callback` through [Zone.runGuarded].
*/
wrap<F extends Function>(callback: F, source: string): F;
/**
* Invokes a function in a given zone.
*
* The invocation of `callback` can be intercepted by declaring [ZoneSpec.onInvoke].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
run<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Invokes a function in a given zone and catches any exceptions.
*
* Any exceptions thrown will be forwarded to [Zone.HandleError].
*
* The invocation of `callback` can be intercepted by declaring [ZoneSpec.onInvoke]. The
* handling of exceptions can be intercepted by declaring [ZoneSpec.handleError].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
runGuarded<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Execute the Task by restoring the [Zone.currentTask] in the Task's zone.
*
* @param task to run
* @param applyThis
* @param applyArgs
* @returns {any} Value from the `task.callback` function.
*/
runTask<T>(task: Task, applyThis?: any, applyArgs?: any): T;
/**
* Schedule a MicroTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
*/
scheduleMicroTask(
source: string, callback: Function, data?: TaskData,
customSchedule?: (task: Task) => void): MicroTask;
/**
* Schedule a MacroTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
* @param customCancel
*/
scheduleMacroTask(
source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void,
customCancel?: (task: Task) => void): MacroTask;
/**
* Schedule an EventTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
* @param customCancel
*/
scheduleEventTask(
source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void,
customCancel?: (task: Task) => void): EventTask;
/**
* Schedule an existing Task.
*
* Useful for rescheduling a task which was already canceled.
*
* @param task
*/
scheduleTask<T extends Task>(task: T): T;
/**
* Allows the zone to intercept canceling of scheduled Task.
*
* The interception is configured using [ZoneSpec.onCancelTask]. The default canceler invokes
* the [Task.cancelFn].
*
* @param task
* @returns {any}
*/
cancelTask(task: Task): any;
}
interface ZoneType {
/**
* @returns {Zone} Returns the current [Zone]. The only way to change
* the current zone is by invoking a run() method, which will update the current zone for the
* duration of the run method callback.
*/
current: Zone;
/**
* @returns {Task} The task associated with the current execution.
*/
currentTask: Task|null;
/**
* Verify that Zone has been correctly patched. Specifically that Promise is zone aware.
*/
assertZonePatched(): void;
/**
* Return the root zone.
*/
root: Zone;
/**
* load patch for specified native module, allow user to
* define their own patch, user can use this API after loading zone.js
*/
__load_patch(name: string, fn: _PatchFn, ignoreDuplicate?: boolean): void;
/**
* Zone symbol API to generate a string with __zone_symbol__ prefix
*/
__symbol__(name: string): string;
}
/**
* Patch Function to allow user define their own monkey patch module.
*/
type _PatchFn = (global: Window, Zone: ZoneType, api: _ZonePrivate) => void;
/**
* _ZonePrivate interface to provide helper method to help user implement
* their own monkey patch module.
*/
interface _ZonePrivate {
currentZoneFrame: () => _ZoneFrame;
symbol: (name: string) => string;
scheduleMicroTask: (task?: MicroTask) => void;
onUnhandledError: (error: Error) => void;
microtaskDrainDone: () => void;
showUncaughtError: () => boolean;
patchEventTarget: (global: any, apis: any[], options?: any) => boolean[];
patchOnProperties: (obj: any, properties: string[]|null, prototype?: any) => void;
patchThen: (ctro: Function) => void;
patchMethod:
(target: any, name: string,
patchFn: (delegate: Function, delegateName: string, name: string) =>
(self: any, args: any[]) => any) => Function | null;
bindArguments: (args: any[], source: string) => any[];
patchMacroTask:
(obj: any, funcName: string, metaCreator: (self: any, args: any[]) => any) => void;
patchEventPrototype: (_global: any, api: _ZonePrivate) => void;
isIEOrEdge: () => boolean;
ObjectDefineProperty:
(o: any, p: PropertyKey, attributes: PropertyDescriptor&ThisType<any>) => any;
ObjectGetOwnPropertyDescriptor: (o: any, p: PropertyKey) => PropertyDescriptor | undefined;
ObjectCreate(o: object|null, properties?: PropertyDescriptorMap&ThisType<any>): any;
ArraySlice(start?: number, end?: number): any[];
patchClass: (className: string) => void;
wrapWithCurrentZone: (callback: any, source: string) => any;
filterProperties: (target: any, onProperties: string[], ignoreProperties: any[]) => string[];
attachOriginToPatched: (target: any, origin: any) => void;
_redefineProperty: (target: any, callback: string, desc: any) => void;
patchCallbacks:
(api: _ZonePrivate, target: any, targetName: string, method: string,
callbacks: string[]) => void;
getGlobalObjects: () => {
globalSources: any, zoneSymbolEventNames: any, eventNames: string[], isBrowser: boolean,
isMix: boolean, isNode: boolean, TRUE_STR: string, FALSE_STR: string,
ZONE_SYMBOL_PREFIX: string, ADD_EVENT_LISTENER_STR: string,
REMOVE_EVENT_LISTENER_STR: string
} | undefined;
}
/**
* _ZoneFrame represents zone stack frame information
*/
interface _ZoneFrame {
parent: _ZoneFrame|null;
zone: Zone;
}
interface UncaughtPromiseError extends Error {
zone: Zone;
task: Task;
promise: Promise<any>;
rejection: any;
throwOriginal?: boolean;
}
/**
* Provides a way to configure the interception of zone events.
*
* Only the `name` property is required (all other are optional).
*/
interface ZoneSpec {
/**
* The name of the zone. Useful when debugging Zones.
*/
name: string;
/**
* A set of properties to be associated with Zone. Use [Zone.get] to retrieve them.
*/
properties?: {[key: string]: any};
/**
* Allows the interception of zone forking.
*
* When the zone is being forked, the request is forwarded to this method for interception.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param zoneSpec The argument passed into the `fork` method.
*/
onFork?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
zoneSpec: ZoneSpec) => Zone;
/**
* Allows interception of the wrapping of the callback.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `wrap` method.
* @param source The argument passed into the `wrap` method.
*/
onIntercept?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function,
source: string) => Function;
/**
* Allows interception of the callback invocation.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `run` method.
* @param applyThis The argument passed into the `run` method.
* @param applyArgs The argument passed into the `run` method.
* @param source The argument passed into the `run` method.
*/
onInvoke?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function,
applyThis: any, applyArgs?: any[], source?: string) => any;
/**
* Allows interception of the error handling.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param error The argument passed into the `handleError` method.
*/
onHandleError?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
error: any) => boolean;
/**
* Allows interception of task scheduling.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `scheduleTask` method.
*/
onScheduleTask?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => Task;
onInvokeTask?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task,
applyThis: any, applyArgs?: any[]) => any;
/**
* Allows interception of task cancellation.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `cancelTask` method.
*/
onCancelTask?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => any;
/**
* Notifies of changes to the task queue empty status.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param hasTaskState
*/
onHasTask?:
(parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
hasTaskState: HasTaskState) => void;
}
/**
* A delegate when intercepting zone operations.
*
* A ZoneDelegate is needed because a child zone can't simply invoke a method on a parent zone. For
* example a child zone wrap can't just call parent zone wrap. Doing so would create a callback
* which is bound to the parent zone. What we are interested in is intercepting the callback before
* it is bound to any zone. Furthermore, we also need to pass the targetZone (zone which received
* the original request) to the delegate.
*
* The ZoneDelegate methods mirror those of Zone with an addition of extra targetZone argument in
* the method signature. (The original Zone which received the request.) Some methods are renamed
* to prevent confusion, because they have slightly different semantics and arguments.
*
* - `wrap` => `intercept`: The `wrap` method delegates to `intercept`. The `wrap` method returns
* a callback which will run in a given zone, where as intercept allows wrapping the callback
* so that additional code can be run before and after, but does not associate the callback
* with the zone.
* - `run` => `invoke`: The `run` method delegates to `invoke` to perform the actual execution of
* the callback. The `run` method switches to new zone; saves and restores the `Zone.current`;
* and optionally performs error handling. The invoke is not responsible for error handling,
* or zone management.
*
* Not every method is usually overwritten in the child zone, for this reason the ZoneDelegate
* stores the closest zone which overwrites this behavior along with the closest ZoneSpec.
*
* NOTE: We have tried to make this API analogous to Event bubbling with target and current
* properties.
*
* Note: The ZoneDelegate treats ZoneSpec as class. This allows the ZoneSpec to use its `this` to
* store internal state.
*/
interface ZoneDelegate {
zone: Zone;
fork(targetZone: Zone, zoneSpec: ZoneSpec): Zone;
intercept(targetZone: Zone, callback: Function, source: string): Function;
invoke(targetZone: Zone, callback: Function, applyThis?: any, applyArgs?: any[], source?: string):
any;
handleError(targetZone: Zone, error: any): boolean;
scheduleTask(targetZone: Zone, task: Task): Task;
invokeTask(targetZone: Zone, task: Task, applyThis?: any, applyArgs?: any[]): any;
cancelTask(targetZone: Zone, task: Task): any;
hasTask(targetZone: Zone, isEmpty: HasTaskState): void;
}
type HasTaskState = {
microTask: boolean; macroTask: boolean; eventTask: boolean; change: TaskType;
};
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
type TaskType = 'microTask'|'macroTask'|'eventTask';
/**
* Task type: `notScheduled`, `scheduling`, `scheduled`, `running`, `canceling`, 'unknown'.
*/
type TaskState = 'notScheduled'|'scheduling'|'scheduled'|'running'|'canceling'|'unknown';
/**
*/
interface TaskData {
/**
* A periodic [MacroTask] is such which get automatically rescheduled after it is executed.
*/
isPeriodic?: boolean;
/**
* Delay in milliseconds when the Task will run.
*/
delay?: number;
/**
* identifier returned by the native setTimeout.
*/
handleId?: number;
}
/**
* Represents work which is executed with a clean stack.
*
* Tasks are used in Zones to mark work which is performed on clean stack frame. There are three
* kinds of task. [MicroTask], [MacroTask], and [EventTask].
*
* A JS VM can be modeled as a [MicroTask] queue, [MacroTask] queue, and [EventTask] set.
*
* - [MicroTask] queue represents a set of tasks which are executing right after the current stack
* frame becomes clean and before a VM yield. All [MicroTask]s execute in order of insertion
* before VM yield and the next [MacroTask] is executed.
* - [MacroTask] queue represents a set of tasks which are executed one at a time after each VM
* yield. The queue is ordered by time, and insertions can happen in any location.
* - [EventTask] is a set of tasks which can at any time be inserted to the end of the [MacroTask]
* queue. This happens when the event fires.
*
*/
interface Task {
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
type: TaskType;
/**
* Task state: `notScheduled`, `scheduling`, `scheduled`, `running`, `canceling`, `unknown`.
*/
state: TaskState;
/**
* Debug string representing the API which requested the scheduling of the task.
*/
source: string;
/**
* The Function to be used by the VM upon entering the [Task]. This function will delegate to
* [Zone.runTask] and delegate to `callback`.
*/
invoke: Function;
/**
* Function which needs to be executed by the Task after the [Zone.currentTask] has been set to
* the current task.
*/
callback: Function;
/**
* Task specific options associated with the current task. This is passed to the `scheduleFn`.
*/
data?: TaskData;
/**
* Represents the default work which needs to be done to schedule the Task by the VM.
*
* A zone may choose to intercept this function and perform its own scheduling.
*/
scheduleFn?: (task: Task) => void;
/**
* Represents the default work which needs to be done to un-schedule the Task from the VM. Not all
* Tasks are cancelable, and therefore this method is optional.
*
* A zone may chose to intercept this function and perform its own un-scheduling.
*/
cancelFn?: (task: Task) => void;
/**
* @type {Zone} The zone which will be used to invoke the `callback`. The Zone is captured
* at the time of Task creation.
*/
readonly zone: Zone;
/**
* Number of times the task has been executed, or -1 if canceled.
*/
runCount: number;
/**
* Cancel the scheduling request. This method can be called from `ZoneSpec.onScheduleTask` to
* cancel the current scheduling interception. Once canceled the task can be discarded or
* rescheduled using `Zone.scheduleTask` on a different zone.
*/
cancelScheduleRequest(): void;
}
interface MicroTask extends Task {
type: 'microTask';
}
interface MacroTask extends Task {
type: 'macroTask';
}
interface EventTask extends Task {
type: 'eventTask';
}
/** @internal */
type AmbientZone = Zone;
/** @internal */
type AmbientZoneDelegate = ZoneDelegate;
const Zone: ZoneType = (function(global: any) {
const performance: {mark(name: string): void; measure(name: string, label: string): void;} =
global['performance'];
function mark(name: string) {
performance && performance['mark'] && performance['mark'](name);
}
function performanceMeasure(name: string, label: string) {
performance && performance['measure'] && performance['measure'](name, label);
}
mark('Zone');
// Initialize before it's accessed below.
// __Zone_symbol_prefix global can be used to override the default zone
// symbol prefix with a custom one if needed.
const symbolPrefix = global['__Zone_symbol_prefix'] || '__zone_symbol__';
function __symbol__(name: string) {
return symbolPrefix + name;
}
const checkDuplicate = global[__symbol__('forceDuplicateZoneCheck')] === true;
if (global['Zone']) {
// if global['Zone'] already exists (maybe zone.js was already loaded or
// some other lib also registered a global object named Zone), we may need
// to throw an error, but sometimes user may not want this error.
// For example,
// we have two web pages, page1 includes zone.js, page2 doesn't.
// and the 1st time user load page1 and page2, everything work fine,
// but when user load page2 again, error occurs because global['Zone'] already exists.
// so we add a flag to let user choose whether to throw this error or not.
// By default, if existing Zone is from zone.js, we will not throw the error.
if (checkDuplicate || typeof global['Zone'].__symbol__ !== 'function') {
throw new Error('Zone already loaded.');
} else {
return global['Zone'];
}
}
class Zone implements AmbientZone {
// tslint:disable-next-line:require-internal-with-underscore
static __symbol__: (name: string) => string = __symbol__;
static assertZonePatched() {
if (global['Promise'] !== patches['ZoneAwarePromise']) {
throw new Error(
'Zone.js has detected that ZoneAwarePromise `(window|global).Promise` ' +
'has been overwritten.\n' +
'Most likely cause is that a Promise polyfill has been loaded ' +
'after Zone.js (Polyfilling Promise api is not necessary when zone.js is loaded. ' +
'If you must load one, do so before loading zone.js.)');
}
}
static get root(): AmbientZone {
let zone = Zone.current;
while (zone.parent) {
zone = zone.parent;
}
return zone;
}
static get current(): AmbientZone {
return _currentZoneFrame.zone;
}
static get currentTask(): Task|null {
return _currentTask;
}
// tslint:disable-next-line:require-internal-with-underscore
static __load_patch(name: string, fn: _PatchFn, ignoreDuplicate = false): void {
if (patches.hasOwnProperty(name)) {
// `checkDuplicate` option is defined from global variable
// so it works for all modules.
// `ignoreDuplicate` can work for the specified module
if (!ignoreDuplicate && checkDuplicate) {
throw Error('Already loaded patch: ' + name);
}
} else if (!global['__Zone_disable_' + name]) {
const perfName = 'Zone:' + name;
mark(perfName);
patches[name] = fn(global, Zone, _api);
performanceMeasure(perfName, perfName);
}
}
public get parent(): AmbientZone|null {
return this._parent;
}
public get name(): string {
return this._name;
}
private _parent: Zone|null;
private _name: string;
private _properties: {[key: string]: any};
private _zoneDelegate: ZoneDelegate;
constructor(parent: Zone|null, zoneSpec: ZoneSpec|null) {
this._parent = parent;
this._name = zoneSpec ? zoneSpec.name || 'unnamed' : '<root>';
this._properties = zoneSpec && zoneSpec.properties || {};
this._zoneDelegate =
new ZoneDelegate(this, this._parent && this._parent._zoneDelegate, zoneSpec);
}
public get(key: string): any {
const zone: Zone = this.getZoneWith(key) as Zone;
if (zone) return zone._properties[key];
}
public getZoneWith(key: string): AmbientZone|null {
let current: Zone|null = this;
while (current) {
if (current._properties.hasOwnProperty(key)) {
return current;
}
current = current._parent;
}
return null;
}
public fork(zoneSpec: ZoneSpec): AmbientZone {
if (!zoneSpec) throw new Error('ZoneSpec required!');
return this._zoneDelegate.fork(this, zoneSpec);
}
public wrap<T extends Function>(callback: T, source: string): T {
if (typeof callback !== 'function') {
throw new Error('Expecting function got: ' + callback);
}
const _callback = this._zoneDelegate.intercept(this, callback, source);
const zone: Zone = this;
return function(this: unknown) {
return zone.runGuarded(_callback, this, <any>arguments, source);
} as any as T;
}
public run(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): any;
public run<T>(
callback: (...args: any[]) => T, applyThis?: any, applyArgs?: any[], source?: string): T {
_currentZoneFrame = {parent: _currentZoneFrame, zone: this};
try {
return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source);
} finally {
_currentZoneFrame = _currentZoneFrame.parent!;
}
}
public runGuarded(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): any;
public runGuarded<T>(
callback: (...args: any[]) => T, applyThis: any = null, applyArgs?: any[],
source?: string) {
_currentZoneFrame = {parent: _currentZoneFrame, zone: this};
try {
try {
return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source);
} catch (error) {
if (this._zoneDelegate.handleError(this, error)) {
throw error;
}
}
} finally {
_currentZoneFrame = _currentZoneFrame.parent!;
}
}
runTask(task: Task, applyThis?: any, applyArgs?: any): any {
if (task.zone != this) {
throw new Error(
'A task can only be run in the zone of creation! (Creation: ' +
(task.zone || NO_ZONE).name + '; Execution: ' + this.name + ')');
}
// https://github.com/angular/zone.js/issues/778, sometimes eventTask
// will run in notScheduled(canceled) state, we should not try to
// run such kind of task but just return
if (task.state === notScheduled && (task.type === eventTask || task.type === macroTask)) {
return;
}
const reEntryGuard = task.state != running;
reEntryGuard && (task as ZoneTask<any>)._transitionTo(running, scheduled);
task.runCount++;
const previousTask = _currentTask;
_currentTask = task;
_currentZoneFrame = {parent: _currentZoneFrame, zone: this};
try {
if (task.type == macroTask && task.data && !task.data.isPeriodic) {
task.cancelFn = undefined;
}
try {
return this._zoneDelegate.invokeTask(this, task, applyThis, applyArgs);
} catch (error) {
if (this._zoneDelegate.handleError(this, error)) {
throw error;
}
}
} finally {
// if the task's state is notScheduled or unknown, then it has already been cancelled
// we should not reset the state to scheduled
if (task.state !== notScheduled && task.state !== unknown) {
if (task.type == eventTask || (task.data && task.data.isPeriodic)) {
reEntryGuard && (task as ZoneTask<any>)._transitionTo(scheduled, running);
} else {
task.runCount = 0;
this._updateTaskCount(task as ZoneTask<any>, -1);
reEntryGuard &&
(task as ZoneTask<any>)._transitionTo(notScheduled, running, notScheduled);
}
}
_currentZoneFrame = _currentZoneFrame.parent!;
_currentTask = previousTask;
}
}
scheduleTask<T extends Task>(task: T): T {
if (task.zone && task.zone !== this) {
// check if the task was rescheduled, the newZone
// should not be the children of the original zone
let newZone: any = this;
while (newZone) {
if (newZone === task.zone) {
throw Error(`can not reschedule task to ${
this.name} which is descendants of the original zone ${task.zone.name}`);
}
newZone = newZone.parent;
}
}
(task as any as ZoneTask<any>)._transitionTo(scheduling, notScheduled);
const zoneDelegates: ZoneDelegate[] = [];
(task as any as ZoneTask<any>)._zoneDelegates = zoneDelegates;
(task as any as ZoneTask<any>)._zone = this;
try {
task = this._zoneDelegate.scheduleTask(this, task) as T;
} catch (err) {
// should set task's state to unknown when scheduleTask throw error
// because the err may from reschedule, so the fromState maybe notScheduled
(task as any as ZoneTask<any>)._transitionTo(unknown, scheduling, notScheduled);
// TODO: @JiaLiPassion, should we check the result from handleError?
this._zoneDelegate.handleError(this, err);
throw err;
}
if ((task as any as ZoneTask<any>)._zoneDelegates === zoneDelegates) {
// we have to check because internally the delegate can reschedule the task.
this._updateTaskCount(task as any as ZoneTask<any>, 1);
}
if ((task as any as ZoneTask<any>).state == scheduling) {
(task as any as ZoneTask<any>)._transitionTo(scheduled, scheduling);
}
return task;
}
scheduleMicroTask(
source: string, callback: Function, data?: TaskData,
customSchedule?: (task: Task) => void): MicroTask {
return this.scheduleTask(
new ZoneTask(microTask, source, callback, data, customSchedule, undefined));
}
scheduleMacroTask(
source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void,
customCancel?: (task: Task) => void): MacroTask {
return this.scheduleTask(
new ZoneTask(macroTask, source, callback, data, customSchedule, customCancel));
}
scheduleEventTask(
source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void,
customCancel?: (task: Task) => void): EventTask {
return this.scheduleTask(
new ZoneTask(eventTask, source, callback, data, customSchedule, customCancel));
}
cancelTask(task: Task): any {
if (task.zone != this)
throw new Error(
'A task can only be cancelled in the zone of creation! (Creation: ' +
(task.zone || NO_ZONE).name + '; Execution: ' + this.name + ')');
(task as ZoneTask<any>)._transitionTo(canceling, scheduled, running);
try {
this._zoneDelegate.cancelTask(this, task);
} catch (err) {
// if error occurs when cancelTask, transit the state to unknown
(task as ZoneTask<any>)._transitionTo(unknown, canceling);
this._zoneDelegate.handleError(this, err);
throw err;
}
this._updateTaskCount(task as ZoneTask<any>, -1);
(task as ZoneTask<any>)._transitionTo(notScheduled, canceling);
task.runCount = 0;
return task;
}
private _updateTaskCount(task: ZoneTask<any>, count: number) {
const zoneDelegates = task._zoneDelegates!;
if (count == -1) {
task._zoneDelegates = null;
}
for (let i = 0; i < zoneDelegates.length; i++) {
zoneDelegates[i]._updateTaskCount(task.type, count);
}
}
}
const DELEGATE_ZS: ZoneSpec = {
name: '',
onHasTask:
(delegate: AmbientZoneDelegate, _: AmbientZone, target: AmbientZone,
hasTaskState: HasTaskState): void => delegate.hasTask(target, hasTaskState),
onScheduleTask:
(delegate: AmbientZoneDelegate, _: AmbientZone, target: AmbientZone, task: Task): Task =>
delegate.scheduleTask(target, task),
onInvokeTask:
(delegate: AmbientZoneDelegate, _: AmbientZone, target: AmbientZone, task: Task,
applyThis: any, applyArgs: any): any =>
delegate.invokeTask(target, task, applyThis, applyArgs),
onCancelTask: (delegate: AmbientZoneDelegate, _: AmbientZone, target: AmbientZone, task: Task):
any => delegate.cancelTask(target, task)
};
class ZoneDelegate implements AmbientZoneDelegate {
public zone: Zone;
private _taskCounts:
{microTask: number,
macroTask: number,
eventTask: number} = {'microTask': 0, 'macroTask': 0, 'eventTask': 0};
private _parentDelegate: ZoneDelegate|null;
private _forkDlgt: ZoneDelegate|null;
private _forkZS: ZoneSpec|null;
private _forkCurrZone: Zone|null;
private _interceptDlgt: ZoneDelegate|null;
private _interceptZS: ZoneSpec|null;
private _interceptCurrZone: Zone|null;
private _invokeDlgt: ZoneDelegate|null;
private _invokeZS: ZoneSpec|null;
private _invokeCurrZone: Zone|null;
private _handleErrorDlgt: ZoneDelegate|null;
private _handleErrorZS: ZoneSpec|null;
private _handleErrorCurrZone: Zone|null;
private _scheduleTaskDlgt: ZoneDelegate|null;
private _scheduleTaskZS: ZoneSpec|null;
private _scheduleTaskCurrZone: Zone|null;
private _invokeTaskDlgt: ZoneDelegate|null;
private _invokeTaskZS: ZoneSpec|null;
private _invokeTaskCurrZone: Zone|null;
private _cancelTaskDlgt: ZoneDelegate|null;
private _cancelTaskZS: ZoneSpec|null;
private _cancelTaskCurrZone: Zone|null;
private _hasTaskDlgt: ZoneDelegate|null;
private _hasTaskDlgtOwner: ZoneDelegate|null;
private _hasTaskZS: ZoneSpec|null;
private _hasTaskCurrZone: Zone|null;
constructor(zone: Zone, parentDelegate: ZoneDelegate|null, zoneSpec: ZoneSpec|null) {
this.zone = zone;
this._parentDelegate = parentDelegate;
this._forkZS = zoneSpec && (zoneSpec && zoneSpec.onFork ? zoneSpec : parentDelegate!._forkZS);
this._forkDlgt = zoneSpec && (zoneSpec.onFork ? parentDelegate : parentDelegate!._forkDlgt);
this._forkCurrZone =
zoneSpec && (zoneSpec.onFork ? this.zone : parentDelegate!._forkCurrZone);
this._interceptZS =
zoneSpec && (zoneSpec.onIntercept ? zoneSpec : parentDelegate!._interceptZS);
this._interceptDlgt =
zoneSpec && (zoneSpec.onIntercept ? parentDelegate : parentDelegate!._interceptDlgt);
this._interceptCurrZone =
zoneSpec && (zoneSpec.onIntercept ? this.zone : parentDelegate!._interceptCurrZone);
this._invokeZS = zoneSpec && (zoneSpec.onInvoke ? zoneSpec : parentDelegate!._invokeZS);
this._invokeDlgt =
zoneSpec && (zoneSpec.onInvoke ? parentDelegate! : parentDelegate!._invokeDlgt);
this._invokeCurrZone =
zoneSpec && (zoneSpec.onInvoke ? this.zone : parentDelegate!._invokeCurrZone);
this._handleErrorZS =
zoneSpec && (zoneSpec.onHandleError ? zoneSpec : parentDelegate!._handleErrorZS);
this._handleErrorDlgt =
zoneSpec && (zoneSpec.onHandleError ? parentDelegate! : parentDelegate!._handleErrorDlgt);
this._handleErrorCurrZone =
zoneSpec && (zoneSpec.onHandleError ? this.zone : parentDelegate!._handleErrorCurrZone);
this._scheduleTaskZS =
zoneSpec && (zoneSpec.onScheduleTask ? zoneSpec : parentDelegate!._scheduleTaskZS);
this._scheduleTaskDlgt = zoneSpec &&
(zoneSpec.onScheduleTask ? parentDelegate! : parentDelegate!._scheduleTaskDlgt);
this._scheduleTaskCurrZone =
zoneSpec && (zoneSpec.onScheduleTask ? this.zone : parentDelegate!._scheduleTaskCurrZone);
this._invokeTaskZS =
zoneSpec && (zoneSpec.onInvokeTask ? zoneSpec : parentDelegate!._invokeTaskZS);
this._invokeTaskDlgt =
zoneSpec && (zoneSpec.onInvokeTask ? parentDelegate! : parentDelegate!._invokeTaskDlgt);
this._invokeTaskCurrZone =
zoneSpec && (zoneSpec.onInvokeTask ? this.zone : parentDelegate!._invokeTaskCurrZone);
this._cancelTaskZS =
zoneSpec && (zoneSpec.onCancelTask ? zoneSpec : parentDelegate!._cancelTaskZS);
this._cancelTaskDlgt =
zoneSpec && (zoneSpec.onCancelTask ? parentDelegate! : parentDelegate!._cancelTaskDlgt);
this._cancelTaskCurrZone =
zoneSpec && (zoneSpec.onCancelTask ? this.zone : parentDelegate!._cancelTaskCurrZone);
this._hasTaskZS = null;
this._hasTaskDlgt = null;
this._hasTaskDlgtOwner = null;
this._hasTaskCurrZone = null;
const zoneSpecHasTask = zoneSpec && zoneSpec.onHasTask;
const parentHasTask = parentDelegate && parentDelegate._hasTaskZS;
if (zoneSpecHasTask || parentHasTask) {
// If we need to report hasTask, than this ZS needs to do ref counting on tasks. In such
// a case all task related interceptors must go through this ZD. We can't short circuit it.
this._hasTaskZS = zoneSpecHasTask ? zoneSpec : DELEGATE_ZS;
this._hasTaskDlgt = parentDelegate;
this._hasTaskDlgtOwner = this;
this._hasTaskCurrZone = zone;
if (!zoneSpec!.onScheduleTask) {
this._scheduleTaskZS = DELEGATE_ZS;
this._scheduleTaskDlgt = parentDelegate!;
this._scheduleTaskCurrZone = this.zone;
}
if (!zoneSpec!.onInvokeTask) {
this._invokeTaskZS = DELEGATE_ZS;
this._invokeTaskDlgt = parentDelegate!;
this._invokeTaskCurrZone = this.zone;
}
if (!zoneSpec!.onCancelTask) {
this._cancelTaskZS = DELEGATE_ZS;
this._cancelTaskDlgt = parentDelegate!;
this._cancelTaskCurrZone = this.zone;
}
}
}
fork(targetZone: Zone, zoneSpec: ZoneSpec): AmbientZone {
return this._forkZS ? this._forkZS.onFork!(this._forkDlgt!, this.zone, targetZone, zoneSpec) :
new Zone(targetZone, zoneSpec);
}
intercept(targetZone: Zone, callback: Function, source: string): Function {
return this._interceptZS ?
this._interceptZS.onIntercept!
(this._interceptDlgt!, this._interceptCurrZone!, targetZone, callback, source) :
callback;
}
invoke(
targetZone: Zone, callback: Function, applyThis: any, applyArgs?: any[],
source?: string): any {
return this._invokeZS ? this._invokeZS.onInvoke!
(this._invokeDlgt!, this._invokeCurrZone!, targetZone, callback,
applyThis, applyArgs, source) :
callback.apply(applyThis, applyArgs);
}
handleError(targetZone: Zone, error: any): boolean {
return this._handleErrorZS ?
this._handleErrorZS.onHandleError!
(this._handleErrorDlgt!, this._handleErrorCurrZone!, targetZone, error) :
true;
}
scheduleTask(targetZone: Zone, task: Task): Task {
let returnTask: ZoneTask<any> = task as ZoneTask<any>;
if (this._scheduleTaskZS) {
if (this._hasTaskZS) {
returnTask._zoneDelegates!.push(this._hasTaskDlgtOwner!);
}
// clang-format off
returnTask = this._scheduleTaskZS.onScheduleTask !(
this._scheduleTaskDlgt !, this._scheduleTaskCurrZone !, targetZone, task) as ZoneTask<any>;
// clang-format on
if (!returnTask) returnTask = task as ZoneTask<any>;
} else {
if (task.scheduleFn) {
task.scheduleFn(task);
} else if (task.type == microTask) {
scheduleMicroTask(<MicroTask>task);
} else {
throw new Error('Task is missing scheduleFn.');
}
}
return returnTask;
}
invokeTask(targetZone: Zone, task: Task, applyThis: any, applyArgs?: any[]): any {
return this._invokeTaskZS ? this._invokeTaskZS.onInvokeTask!
(this._invokeTaskDlgt!, this._invokeTaskCurrZone!, targetZone,
task, applyThis, applyArgs) :
task.callback.apply(applyThis, applyArgs);
}
cancelTask(targetZone: Zone, task: Task): any {
let value: any;
if (this._cancelTaskZS) {
value = this._cancelTaskZS.onCancelTask!
(this._cancelTaskDlgt!, this._cancelTaskCurrZone!, targetZone, task);
} else {
if (!task.cancelFn) {
throw Error('Task is not cancelable');
}
value = task.cancelFn(task);
}
return value;
}
hasTask(targetZone: Zone, isEmpty: HasTaskState) {
// hasTask should not throw error so other ZoneDelegate
// can still trigger hasTask callback
try {
this._hasTaskZS &&
this._hasTaskZS.onHasTask!
(this._hasTaskDlgt!, this._hasTaskCurrZone!, targetZone, isEmpty);
} catch (err) {
this.handleError(targetZone, err);
}
}
// tslint:disable-next-line:require-internal-with-underscore
_updateTaskCount(type: TaskType, count: number) {
const counts = this._taskCounts;
const prev = counts[type];
const next = counts[type] = prev + count;
if (next < 0) {
throw new Error('More tasks executed then were scheduled.');
}
if (prev == 0 || next == 0) {
const isEmpty: HasTaskState = {
microTask: counts['microTask'] > 0,
macroTask: counts['macroTask'] > 0,
eventTask: counts['eventTask'] > 0,
change: type
};
this.hasTask(this.zone, isEmpty);
}
}
}
class ZoneTask<T extends TaskType> implements Task {
public type: T;
public source: string;
public invoke: Function;
public callback: Function;
public data: TaskData|undefined;
public scheduleFn: ((task: Task) => void)|undefined;
public cancelFn: ((task: Task) => void)|undefined;
// tslint:disable-next-line:require-internal-with-underscore
_zone: Zone|null = null;
public runCount: number = 0;
// tslint:disable-next-line:require-internal-with-underscore
_zoneDelegates: ZoneDelegate[]|null = null;
// tslint:disable-next-line:require-internal-with-underscore
_state: TaskState = 'notScheduled';
constructor(
type: T, source: string, callback: Function, options: TaskData|undefined,
scheduleFn: ((task: Task) => void)|undefined, cancelFn: ((task: Task) => void)|undefined) {
this.type = type;
this.source = source;
this.data = options;
this.scheduleFn = scheduleFn;
this.cancelFn = cancelFn;
if (!callback) {
throw new Error('callback is not defined');
}
this.callback = callback;
const self = this;
// TODO: @JiaLiPassion options should have interface
if (type === eventTask && options && (options as any).useG) {
this.invoke = ZoneTask.invokeTask;
} else {
this.invoke = function() {
return ZoneTask.invokeTask.call(global, self, this, <any>arguments);
};
}
}
static invokeTask(task: any, target: any, args: any): any {
if (!task) {
task = this;
}
_numberOfNestedTaskFrames++;
try {
task.runCount++;
return task.zone.runTask(task, target, args);
} finally {
if (_numberOfNestedTaskFrames == 1) {
drainMicroTaskQueue();
}
_numberOfNestedTaskFrames--;
}
}
get zone(): Zone {
return this._zone!;
}
get state(): TaskState {
return this._state;
}
public cancelScheduleRequest() {
this._transitionTo(notScheduled, scheduling);
}
// tslint:disable-next-line:require-internal-with-underscore
_transitionTo(toState: TaskState, fromState1: TaskState, fromState2?: TaskState) {
if (this._state === fromState1 || this._state === fromState2) {
this._state = toState;
if (toState == notScheduled) {
this._zoneDelegates = null;
}
} else {
throw new Error(`${this.type} '${this.source}': can not transition to '${
toState}', expecting state '${fromState1}'${
fromState2 ? ' or \'' + fromState2 + '\'' : ''}, was '${this._state}'.`);
}
}
public toString() {
if (this.data && typeof this.data.handleId !== 'undefined') {
return this.data.handleId.toString();
} else {
return Object.prototype.toString.call(this);
}
}
// add toJSON method to prevent cyclic error when
// call JSON.stringify(zoneTask)
public toJSON() {
return {
type: this.type,
state: this.state,
source: this.source,
zone: this.zone.name,
runCount: this.runCount
};
}
}
//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
/// MICROTASK QUEUE
//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
const symbolSetTimeout = __symbol__('setTimeout');
const symbolPromise = __symbol__('Promise');
const symbolThen = __symbol__('then');
let _microTaskQueue: Task[] = [];
let _isDrainingMicrotaskQueue: boolean = false;
let nativeMicroTaskQueuePromise: any;
function scheduleMicroTask(task?: MicroTask) {
// if we are not running in any task, and there has not been anything scheduled
// we must bootstrap the initial task creation by manually scheduling the drain
if (_numberOfNestedTaskFrames === 0 && _microTaskQueue.length === 0) {
// We are not running in Task, so we need to kickstart the microtask queue.
if (!nativeMicroTaskQueuePromise) {
if (global[symbolPromise]) {
nativeMicroTaskQueuePromise = global[symbolPromise].resolve(0);
}
}
if (nativeMicroTaskQueuePromise) {
let nativeThen = nativeMicroTaskQueuePromise[symbolThen];
if (!nativeThen) {
// native Promise is not patchable, we need to use `then` directly
// issue 1078
nativeThen = nativeMicroTaskQueuePromise['then'];
}
nativeThen.call(nativeMicroTaskQueuePromise, drainMicroTaskQueue);
} else {
global[symbolSetTimeout](drainMicroTaskQueue, 0);
}
}
task && _microTaskQueue.push(task);
}
function drainMicroTaskQueue() {
if (!_isDrainingMicrotaskQueue) {
_isDrainingMicrotaskQueue = true;
while (_microTaskQueue.length) {
const queue = _microTaskQueue;
_microTaskQueue = [];
for (let i = 0; i < queue.length; i++) {
const task = queue[i];
try {
task.zone.runTask(task, null, null);
} catch (error) {
_api.onUnhandledError(error);
}
}
}
_api.microtaskDrainDone();
_isDrainingMicrotaskQueue = false;
}
}
//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
/// BOOTSTRAP
//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
const NO_ZONE = {name: 'NO ZONE'};
const notScheduled: 'notScheduled' = 'notScheduled', scheduling: 'scheduling' = 'scheduling',
scheduled: 'scheduled' = 'scheduled', running: 'running' = 'running',
canceling: 'canceling' = 'canceling', unknown: 'unknown' = 'unknown';
const microTask: 'microTask' = 'microTask', macroTask: 'macroTask' = 'macroTask',
eventTask: 'eventTask' = 'eventTask';
const patches: {[key: string]: any} = {};
const _api: _ZonePrivate = {
symbol: __symbol__,
currentZoneFrame: () => _currentZoneFrame,
onUnhandledError: noop,
microtaskDrainDone: noop,
scheduleMicroTask: scheduleMicroTask,
showUncaughtError: () => !(Zone as any)[__symbol__('ignoreConsoleErrorUncaughtError')],
patchEventTarget: () => [],
patchOnProperties: noop,
patchMethod: () => noop,
bindArguments: () => [],
patchThen: () => noop,
patchMacroTask: () => noop,
patchEventPrototype: () => noop,
isIEOrEdge: () => false,
getGlobalObjects: () => undefined,
ObjectDefineProperty: () => noop,
ObjectGetOwnPropertyDescriptor: () => undefined,
ObjectCreate: () => undefined,
ArraySlice: () => [],
patchClass: () => noop,
wrapWithCurrentZone: () => noop,
filterProperties: () => [],
attachOriginToPatched: () => noop,
_redefineProperty: () => noop,
patchCallbacks: () => noop
};
let _currentZoneFrame: _ZoneFrame = {parent: null, zone: new Zone(null, null)};
let _currentTask: Task|null = null;
let _numberOfNestedTaskFrames = 0;
function noop() {}
performanceMeasure('Zone', 'Zone');
return global['Zone'] = Zone;
})(typeof window !== 'undefined' && window || typeof self !== 'undefined' && self || global);