1859 Commits

Author SHA1 Message Date
Pete Bacon Darwin
123bff7cb6 fix(compiler-cli): generate let statements in ES2015+ mode (#38775)
When the target of the compiler is ES2015 or newer then we should
be generating `let` and `const` variable declarations rather than `var`.

PR Close #38775
2020-09-21 12:27:27 -07:00
Pete Bacon Darwin
b0a43872a8 refactor(compiler-cli): remove unused imports (#38775)
These imports are not used and so are just bloating the code unnecessarily

PR Close #38775
2020-09-21 12:27:27 -07:00
Pete Bacon Darwin
856e74ac98 refactor(compiler-cli): remove undesirable cast in the type translator (#38775)
The cast to `ts.Identifier` was a hack that "just happened to work".
The new approach is more robust and doesn't have to undermine
the type checker.

PR Close #38775
2020-09-21 12:27:27 -07:00
JoostK
49f27e31ed test(compiler-cli): re-enable dynamic value diagnostic tests on Windows CI (#37782)
This commit re-enables some tests that were temporarily disabled on Windows,
as they failed on native Windows CI. The Windows filesystem emulation has
been corrected in an earlier commit, such that the original failure would
now also occur during emulation on Linux CI.

PR Close #37782
2020-09-21 12:26:33 -07:00
JoostK
1a62f74496 test(compiler-cli): fix drive letter casing in Windows filesystem emulation (#37782)
In native windows, the drive letter is a capital letter, while our Windows
filesystem emulation would use lowercase drive letters. This difference may
introduce tests to behave differently in native Windows versus emulated
Windows, potentially causing unexpected CI failures on Windows CI after a PR
has been merged.

Resolves FW-2267

PR Close #37782
2020-09-21 12:26:33 -07:00
Andrew Scott
0c0c54d615 refactor(compiler): simplify visitor logic for attributes (#38899)
The logic for computing identifiers, specifically for bound attributes
can be simplified by using the value span of the binding rather than the
source span.

PR Close #38899
2020-09-21 12:23:58 -07:00
JoostK
e4424863c2 fix(ngcc): fix compilation of ChangeDetectorRef in pipe constructors (#38892)
In #38666 we changed how ngcc deals with type expressions, where it
would now always emit the original type expression into the generated
code as a "local" type value reference instead of synthesizing new
imports using an "imported" type value reference. This was done as a fix
to properly deal with renamed symbols, however it turns out that the
compiler has special handling for certain imported symbols, e.g.
`ChangeDetectorRef` from `@angular/core`. The "local" type value
reference prevented this special logic from being hit, resulting in
incorrect compilation of pipe factories.

This commit fixes the issue by manually inspecting the import of the
type expression, in order to return an "imported" type value reference.
By manually inspecting the import we continue to handle renamed symbols.

Fixes #38883

PR Close #38892
2020-09-18 08:02:46 -07:00
Pete Bacon Darwin
d795a00137 refactor(compiler): replace Comment nodes with leadingComments property (#38811)
Common AST formats such as TS and Babel do not use a separate
node for comments, but instead attach comments to other AST nodes.
Previously this was worked around in TS by creating a `NotEmittedStatement`
AST node to attach the comment to. But Babel does not have this facility,
so it will not be a viable approach for the linker.

This commit refactors the output AST, to remove the `CommentStmt` and
`JSDocCommentStmt` nodes. Instead statements have a collection of
`leadingComments` that are rendered/attached to the final AST nodes
when being translated or printed.

PR Close #38811
2020-09-18 08:01:25 -07:00
Andrew Scott
129107191c refactor(compiler): always return a mutable clone from Scope#resolve (#38857)
This change prevents comments from a resolved node from appearing at
each location the resolved expression is used and also prevents callers
of `Scope#resolve` from accidentally modifying / adding comments to the
declaration site.

PR Close #38857
2020-09-16 15:27:22 -07:00
JoostK
a1c1c450dc test(ngcc): load standard files only once (#38840)
In the integration test suite of ngcc, we load a set of files from
`node_modules` into memory. This includes the `typescript` package and
`@angular` scoped packages, which account for a large number of large
files that needs to be loaded from disk. This commit moves this work
to the top-level, such that it doesn't have to be repeated in all tests.

PR Close #38840
2020-09-15 11:23:13 -07:00
JoostK
fd44d84a33 perf(ngcc): reduce maximum worker count (#38840)
Recent optimizations to ngcc have significantly reduced the total time
it takes to process `node_modules`, to such extend that sharding across
multiple processes has become less effective. Previously, running
ngcc asynchronously would allow for up to 8 workers to be allocated,
however these workers have to repeat work that could otherwise be shared.
Because ngcc is now able to reuse more shared computations, the overhead
of multiple workers is increased and therefore becomes less effective.
As an additional benefit, having fewer workers requires less memory and
less startup time.

To give an idea, using the following test setup:

```bash
npx @angular/cli new perf-test
cd perf-test
yarn ng add @angular/material
./node_modules/.bin/ngcc --properties es2015 module main \
  --first-only --create-ivy-entry-points
```

We observe the following figures on CI:

|                   | 10.1.1    | PR #38840 |
| ----------------- | --------- | --------- |
| Sync              | 85s       | 25s       |
| Async (8 workers) | 22s       | 16s       |
| Async (4 workers) | -         | 11s       |

In addition to changing the default number of workers, ngcc will now
use the environment variable `NGCC_MAX_WORKERS` that may be configured
to either reduce or increase the number of workers.

PR Close #38840
2020-09-15 11:23:09 -07:00
JoostK
f0688b4d18 perf(ngcc): introduce cache for sharing data across entry-points (#38840)
ngcc creates typically two `ts.Program` instances for each entry-point,
one for processing sources and another one for processing the typings.
The creation of these programs is somewhat expensive, as it concerns
module resolution and parsing of source files.

This commit implements several layers of caching to optimize the
creation of programs:

1. A shared module resolution cache across all entry-points within a
   single invocation of ngcc. Both the sources and typings program
   benefit from this cache.
2. Sharing the parsed `ts.SourceFile` for a single entry-point between
   the sources and typings program.
3. Sharing parsed `ts.SourceFile`s of TypeScript's default libraries
   across all entry-points within a single invocation. Some of these
   default library typings are large and therefore expensive to parse,
   so sharing the parsed source files across all entry-points offers
   a significant performance improvement.

Using a bare CLI app created using `ng new` + `ng add @angular/material`,
the above changes offer a 3-4x improvement in ngcc's processing time
when running synchronously and ~2x improvement for asynchronous runs.

PR Close #38840
2020-09-15 11:23:04 -07:00
JoostK
297c060ae7 perf(compiler-cli): optimize computation of type-check scope information (#38539)
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.

This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.

PR Close #38539
2020-09-14 11:54:40 -07:00
JoostK
077f51685a perf(compiler-cli): only emit directive/pipe references that are used (#38539)
For the compilation of a component, the compiler has to prepare some
information about the directives and pipes that are used in the template.
This information includes an expression for directives/pipes, for usage
within the compilation output. For large NgModule compilation scopes
this has shown to introduce a performance hotspot, as the generation of
expressions is quite expensive. This commit reduces the performance
overhead by only generating expressions for the directives/pipes that
are actually used within the template, significantly cutting down on
the compiler's resolve phase.

PR Close #38539
2020-09-14 11:54:37 -07:00
Andrew Scott
2d52c80332 test(compiler): Add back tests for renamed inputs and outputs (#38798)
#38685 corrected the confusion between field and property names so the consumer can
now be determined correctly.

PR Close #38798
2020-09-10 14:33:10 -07:00
Andrew Scott
19598b47ca feat(compiler-cli): add ability to get symbol of reference or variable (#38618)
Adds `TemplateTypeChecker` operation to retrieve the `Symbol` of a
`TmplAstVariable` or `TmplAstReference` in a template.

Sometimes we need to traverse an intermediate variable declaration to arrive at
the correct `ts.Symbol`. For example, loop variables are declared using an intermediate:
```
<div *ngFor="let user of users">
  {{user.name}}
</div>
```
Getting the symbol of user here (from the expression) is tricky, because the TCB looks like:

```
var _t0 = ...; // type of NgForOf
var _t1: any; // context of embedded view for NgForOf structural directive
if (NgForOf.ngTemplateContextGuard(_t0, _t1)) {
  // _t1 is now NgForOfContext<...>
  var _t2 = _t1.$implicit; // let user = '$implicit'
  _t2.name; // user.name expression
}
```
Just getting the `ts.Expression` for the `AST` node `PropRead(ImplicitReceiver, 'user')`
via the sourcemaps will yield the `_t2` expression.  This function recognizes that `_t2`
is a variable declared locally in the TCB, and actually fetch the `ts.Symbol` of its initializer.

These special handlings show the versatility of the `Symbol`
interface defined in the API. With this, when we encounter a template variable,
we can provide the declaration node, as well as specific information
about the variable instance, such as the `ts.Type` and `ts.Symbol`.

PR Close #38618
2020-09-10 12:40:50 -07:00
Andrew Scott
f56ece4fdc feat(compiler-cli): Add ability to get Symbol of AST expression in component template (#38618)
Adds support to the `TemplateTypeChecker` to get a `Symbol` of an AST
expression in a component template.
Not all expressions will have `ts.Symbol`s (e.g. there is no `ts.Symbol`
associated with the expression `a + b`, but there are for both the a and b
nodes individually).

PR Close #38618
2020-09-10 12:40:47 -07:00
Andrew Scott
cf2e8b99a8 feat(compiler-cli): Add ability to get Symbol of Templates and Elements in component template (#38618)
Adds support to the `TemplateTypeChecker` for retrieving a `Symbol` for
`TmplAstTemplate` and `TmplAstElement` nodes in a component template.

PR Close #38618
2020-09-10 12:40:44 -07:00
Andrew Scott
c4556db9f5 feat(compiler-cli): TemplateTypeChecker operation to get Symbol from a template node (#38618)
Specifically, this commit adds support for retrieving a `Symbol` from a
`TmplAstBoundEvent` or `TmplAstBoundAttribute`. Other template nodes
will be supported in following commits.

PR Close #38618
2020-09-10 12:40:41 -07:00
Andrew Scott
a46e0e48a3 refactor(compiler-cli): Adjust output of TCB to support TemplateTypeChecker Symbol retrieval (#38618)
The statements generated in the TCB are optimized for performance and producing diagnostics.
These optimizations can result in generating a TCB that does not have all the information
needed by the `TemplateTypeChecker` for retrieving `Symbol`s. For example, as an optimization,
the TCB will not generate variable declaration statements for directives that have no
references, inputs, or outputs. However, the `TemplateTypeChecker` always needs these
statements to be present in order to provide `ts.Symbol`s and `ts.Type`s for the directives.

This commit adds logic to the TCB generation to ensure the required
information is available in a form that the `TemplateTypeChecker` can
consume. It also adds an option to the `NgCompiler` that makes this
generation configurable.

PR Close #38618
2020-09-10 12:40:38 -07:00
Andrew Scott
9e77bd3087 feat(compiler-cli): define interfaces to be used for TemplateTypeChecker (#38618)
This commit defines the interfaces which outline the information the
`TemplateTypeChecker` can return when requesting a Symbol for an item in the
`TemplateAst`.
Rather than providing the `ts.Symbol`, `ts.Type`, etc.
information in several separate functions, the `TemplateTypeChecker` can
instead provide all the useful information it knows about a particular
node in the `TemplateAst` and allow the callers to determine what to do
with it.

PR Close #38618
2020-09-10 12:40:35 -07:00
Andrew Scott
18f84a0328 Revert "perf(compiler-cli): only emit directive/pipe references that are used (#38539)" (#38765)
This reverts commit 4faac78e32657f6b60b98b4330e746ba645c8f2e.
internal failure:
https://test.corp.google.com/ui#id=OCL:329948619:BASE:329967516:1599160428139:d63165ae

PR Close #38765
2020-09-09 12:21:22 -07:00
Andrew Scott
b0ca3cd0c4 Revert "perf(compiler-cli): optimize computation of type-check scope information (#38539)" (#38765)
This reverts commit ba95b79a218b79b22f070b90e8cdfddaa18f6576.
internal failure:
https://test.corp.google.com/ui#id=OCL:329948619:BASE:329967516:1599160428139:d63165ae

PR Close #38765
2020-09-09 12:21:22 -07:00
JoostK
ba95b79a21 perf(compiler-cli): optimize computation of type-check scope information (#38539)
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.

This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.

PR Close #38539
2020-09-08 14:50:38 -07:00
JoostK
4faac78e32 perf(compiler-cli): only emit directive/pipe references that are used (#38539)
For the compilation of a component, the compiler has to prepare some
information about the directives and pipes that are used in the template.
This information includes an expression for directives/pipes, for usage
within the compilation output. For large NgModule compilation scopes
this has shown to introduce a performance hotspot, as the generation of
expressions is quite expensive. This commit reduces the performance
overhead by only generating expressions for the directives/pipes that
are actually used within the template, significantly cutting down on
the compiler's resolve phase.

PR Close #38539
2020-09-08 14:50:38 -07:00
JoostK
a32a317ea1 fix(compiler-cli): ensure that a declaration is available in type-to-value conversion (#38684)
The type-to-value conversion could previously crash if a symbol was
resolved that does not have any declarations, e.g. because it's imported
from a missing module. This would typically result in a semantic
TypeScript diagnostic and halt further compilation, therefore not
reaching the type-to-value conversion logic. In Bazel however, it turns
out that Angular semantic diagnostics are requested even if there are
semantic TypeScript errors in the program, so it would then reach the
type-to-value conversation and crash.

This commit fixes the unsafe access and adds a test that ignores the
TypeScript semantic error, effectively replicating the situation as
experienced under Bazel.

Fixes #38670

PR Close #38684
2020-09-08 14:06:25 -07:00
Pete Bacon Darwin
7e0b3fd953 fix(compiler-cli): compute source-mappings for localized strings (#38645)
Previously, localized strings had very limited or incorrect source-mapping
information available.

Now the i18n AST nodes and related output AST nodes include source-span
information about message-parts and placeholders - including closing tag
placeholders.

This information is then used when generating the final localized string
ASTs to ensure that the correct source-mapping is rendered.

See #38588 (comment)

PR Close #38645
2020-09-08 13:17:21 -07:00
Pete Bacon Darwin
687477279b refactor(compiler): move ParsedTemplate interface to compiler (#38594)
Previously this interface was mostly stored in compiler-cli, but it
contains some properties that would be useful for compiling the
"declare component" prelink code.

This commit moves some of the interface over to the compiler
package so that it can be referenced there without creating a
circular dependency between the compiler and compiler-cli.

PR Close #38594
2020-09-08 11:43:25 -07:00
Alex Rickabaugh
4007422cc6 fix(compiler): correct confusion between field and property names (#38685)
The `R3TargetBinder` accepts an interface for directive metadata which
declares types for `input` and `output` objects. These types convey the
mapping between the property names for an input or output and the
corresponding property name on the component class. Due to
`R3TargetBinder`'s requirements, this mapping was specified with property
names as keys and field names as values.

However, because of duck typing, this interface was accidentally satisifed
by the opposite mapping, of field names to property names, that was produced
in other parts of the compiler. This form more naturally represents the data
model for inputs.

Rather than accept the field -> property mapping and invert it, this commit
introduces a new abstraction for such mappings which is bidirectional,
eliminating the ambiguous plain object type. This mapping uses new,
unambiguous terminology ("class property name" and "binding property name")
and can be used to satisfy both the needs of the binder as well as those of
the template type-checker (field -> property).

A new test ensures that the input/output metadata produced by the compiler
during analysis is directly compatible with the binder via this unambiguous
new interface.

PR Close #38685
2020-09-08 11:43:02 -07:00
Pete Bacon Darwin
7869de6136 fix(ngcc): use aliased exported types correctly (#38666)
If a type has been renamed when it was exported, we need to
reference the external public alias name rather than the internal
original name for the type. Otherwise we will try to import the
type by its internal name, which is not publicly accessible.

Fixes #38238

PR Close #38666
2020-09-08 11:41:21 -07:00
Pete Bacon Darwin
2c4a98a285 fix(localize): do not expose NodeJS typings in $localize runtime code (#38700)
A recent change to `@angular/localize` brought in the `AbsoluteFsPath` type
from the `@angular/compiler-cli`. But this brought along with it a reference
to NodeJS typings - specifically the `FileSystem` interface refers to the
`Buffer` type from NodeJS.

This affects compilation of `@angular/localize` code that will be run in
the browser - for example projects that reference `loadTranslations()`.
The compilation breaks if the NodeJS typings are not included in the build.
Clearly it is not desirable to have these typings included when the project
is not targeting NodeJS.

This commit replaces references to the NodeJS `Buffer` type with `Uint8Array`,
which is available across all platforms and is actually the super-class of
`Buffer`.

Fixes #38692

PR Close #38700
2020-09-08 11:40:58 -07:00
Alex Rickabaugh
c90eb5450d refactor(compiler-cli): make template parsing errors into diagnostics (#38576)
Previously, the compiler was not able to display template parsing errors as
true `ts.Diagnostic`s that point inside the template. Instead, it would
throw an actual `Error`, and "crash" with a stack trace containing the
template errors.

Not only is this a poor user experience, but it causes the Language Service
to also crash as the user is editing a template (in actuality the LS has to
work around this bug).

With this commit, such parsing errors are converted to true template
diagnostics with appropriate span information to be displayed contextually
along with all other diagnostics. This majorly improves the user experience
and unblocks the Language Service from having to deal with the compiler
"crashing" to report errors.

PR Close #38576
2020-09-03 14:02:35 -07:00
Alex Rickabaugh
3e97435f1c refactor(compiler-cli): split out template diagnostics package (#38576)
The template type-checking engine includes utilities for creating
`ts.Diagnostic`s for component templates. Previously only the template type-
checker itself created such diagnostics. However, the template parser also
produces errors which should be represented as template diagnostics.

This commit prepares for that conversion by extracting the machinery for
producing template diagnostics into its own sub-package, so that other parts
of the compiler can depend on it without depending on the entire template
type-checker.

PR Close #38576
2020-09-03 14:02:31 -07:00
Pete Bacon Darwin
1d8c5d88cd refactor(compiler): element.sourceSpan should span the outerHTML (#38581)
Previously, the `sourceSpan` and `startSourceSpan` were the same
object, which meant that you had the following situation:

```
element = <div>some content</div>
sourceSpan = <div>
startSourceSpan = <div>
endSourceSpan = </div>
```

This made `sourceSpan` redundant and meant that if you
wanted a span for the whole element including its content
and closing tag, it had to be computed.

Now `sourceSpan` is separated from `startSourceSpan`
resulting in:

```
element = <div>some content</div>
sourceSpan = <div>some content</div>
startSourceSpan = <div>
endSourceSpan = </div>
```

PR Close #38581
2020-09-02 14:47:31 -07:00
Pete Bacon Darwin
86e11f1110 refactor(compiler): move the line-ending handling decision (#38581)
Previously the lexer was responsible for deciding whether an "inline"
template should also have its line-endings normalized.

Now this decision is made higher up in the call stack to allow more
flexibility in the parser/lexer.

PR Close #38581
2020-09-02 14:47:25 -07:00
crisbeto
f5a148b1b7 fix(compiler): incorrectly inferring namespace for HTML nodes inside SVG (#38477)
The HTML parser gets an element's namespace either from the tag name
(e.g. `<svg:rect>`) or from its parent element `<svg><rect></svg>`) which
breaks down when an element is inside of an SVG `foreignElement`,
because foreign elements allow nodes from a different namespace to be
inserted into an SVG.

These changes add another flag to the tag definitions which tells child
nodes whether to try to inherit their namespaces from their parents.
It also adds a definition for `foreignObject` with the new flag,
allowing elements placed inside it to infer their namespaces instead.

Fixes #37218.

PR Close #38477
2020-08-31 13:25:38 -07:00
Alan Agius
281b647f15 refactor(compiler-cli): remove usage of ts.updateIdentifier (#38076)
With Typescript 4, `ts.updateIdentifier` is no longer available.
Calling `ts.updateIdentifier` used to return the same node when
`typeArguments` was `undefined` because `node.typeArguments`
was also `undefined`.

Relevant TS code:
```js
function updateIdentifier(node, typeArguments) {
  return node.typeArguments !== typeArguments
      ? updateNode(createIdentifier(ts.idText(node), typeArguments), node)
      : node;
}
```

PR Close #38076
2020-08-24 13:07:02 -07:00
Alan Agius
0fc44e0436 feat(compiler-cli): add support for TypeScript 4.0 (#38076)
With this change we add support for TypeScript 4.0

PR Close #38076
2020-08-24 13:06:59 -07:00
JoostK
874792dc43 feat(compiler): support unary operators for more accurate type checking (#37918)
Prior to this change, the unary + and - operators would be parsed as `x - 0`
and `0 - x` respectively. The runtime semantics of these expressions are
equivalent, however they may introduce inaccurate template type checking
errors as the literal type is lost, for example:

```ts
@Component({
  template: `<button [disabled]="isAdjacent(-1)"></button>`
})
export class Example {
  isAdjacent(direction: -1 | 1): boolean { return false; }
}
```

would incorrectly report a type-check error:

> error TS2345: Argument of type 'number' is not assignable to parameter
  of type '-1 | 1'.

Additionally, the translated expression for the unary + operator would be
considered as arithmetic expression with an incompatible left-hand side:

> error TS2362: The left-hand side of an arithmetic operation must be of
  type 'any', 'number', 'bigint' or an enum type.

To resolve this issues, the implicit transformation should be avoided.
This commit adds a new unary AST node to represent these expressions,
allowing for more accurate type-checking.

Fixes #20845
Fixes #36178

PR Close #37918
2020-08-21 12:25:53 -07:00
crisbeto
e7da4040d6 fix(compiler-cli): adding references to const enums in runtime code (#38542)
We had a couple of places where we were assuming that if a particular
symbol has a value, then it will exist at runtime. This is true in most cases,
but it breaks down for `const` enums.

Fixes #38513.

PR Close #38542
2020-08-21 12:23:21 -07:00
Alex Rickabaugh
0b54c0c6b4 refactor(compiler-cli): add getTemplateOfComponent to TemplateTypeChecker (#38355)
This commit adds a `getTemplateOfComponent` method to the
`TemplateTypeChecker` API, which retrieves the actual nodes parsed and used
by the compiler for template type-checking. This is advantageous for the
language service, which may need to query other APIs in
`TemplateTypeChecker` that require the same nodes used to bind the template
while generating the TCB.

Fixes #38352

PR Close #38355
2020-08-19 14:07:03 -07:00
Joey Perrott
e472f5f688 refactor(ngcc): update yargs and typings for yargs (#38470)
Updating yargs and typings for the updated yargs module.

PR Close #38470
2020-08-17 15:30:33 -07:00
Paul Gschwendtner
3b9c802dee fix(ngcc): detect synthesized delegate constructors for downleveled ES2015 classes (#38463)
Similarly to the change we landed in the `@angular/core` reflection
capabilities, we need to make sure that ngcc can detect pass-through
delegate constructors for classes using downleveled ES2015 output.

More details can be found in the preceding commit, and in the issue
outlining the problem: #38453.

Fixes #38453.

PR Close #38463
2020-08-17 10:55:40 -07:00
Andrew Kushnir
cb05c0102f fix(core): move generated i18n statements to the consts field of ComponentDef (#38404)
This commit updates the code to move generated i18n statements into the `consts` field of
ComponentDef to avoid invoking `$localize` function before component initialization (to better
support runtime translations) and also avoid problems with lazy-loading when i18n defs may not
be present in a chunk where it's referenced.

Prior to this change the i18n statements were generated at the top leve:

```
var I18N_0;
if (typeof ngI18nClosureMode !== "undefined" && ngI18nClosureMode) {
    var MSG_X = goog.getMsg(“…”);
    I18N_0 = MSG_X;
} else {
    I18N_0 = $localize('...');
}

defineComponent({
    // ...
    template: function App_Template(rf, ctx) {
        i0.ɵɵi18n(2, I18N_0);
    }
});
```

This commit updates the logic to generate the following code instead:

```
defineComponent({
    // ...
    consts: function() {
        var I18N_0;
        if (typeof ngI18nClosureMode !== "undefined" && ngI18nClosureMode) {
            var MSG_X = goog.getMsg(“…”);
            I18N_0 = MSG_X;
        } else {
            I18N_0 = $localize('...');
        }
        return [
            I18N_0
        ];
    },
    template: function App_Template(rf, ctx) {
        i0.ɵɵi18n(2, 0);
    }
});
```

Also note that i18n template instructions now refer to the `consts` array using an index
(similar to other template instructions).

PR Close #38404
2020-08-17 10:13:57 -07:00
Andrew Kushnir
5f90b64328 refactor(compiler): i18n compiler tests refactoring (#38404)
This commit refactors i18n compiler tests to avoid code duplication and simplify further maintenance and updates.

PR Close #38404
2020-08-17 10:13:55 -07:00
Ahn
d5f819ebc1 style(compiler-cli): remove unused constant (#38441)
Remove unused constant allDiagnostics

PR Close #38441
2020-08-13 13:32:41 -07:00
JoostK
1388c1761f perf(compiler-cli): don't emit template guards when child scope is empty (#38418)
For a template that contains for example `<span *ngIf="first"></span>`
there's no need to render the `NgIf` guard expression, as the child
scope does not have any type-checking statements, so any narrowing
effect of the guard is not applicable.

This seems like a minor improvement, however it reduces the number of
flow-node antecedents that TypeScript needs to keep into account for
such cases, resulting in an overall reduction of type-checking time.

PR Close #38418
2020-08-13 13:28:46 -07:00
JoostK
fb8f4b4d72 perf(compiler-cli): only generate directive declarations when used (#38418)
The template type-checker would always generate a directive declaration
even if its type was never used. For example, directives without any
input nor output bindings nor exportAs references don't need the
directive to be declared, as its type would never be used.

This commit makes the `TcbOp`s that are responsible for declaring a
directive as optional, such that they are only executed when requested
from another operation.

PR Close #38418
2020-08-13 13:28:44 -07:00
JoostK
f42e6ce917 perf(compiler-cli): only generate type-check code for referenced DOM elements (#38418)
The template type-checker would generate a statement with a call
expression for all DOM elements in a template of the form:

```
const _t1 = document.createElement("div");
```

Profiling has shown that this is a particularly expensive call to
perform type inference on, as TypeScript needs to perform signature
selection of `Document.createElement` and resolve the exact type from
the `HTMLElementTagNameMap`. However, it can be observed that the
statement by itself does not contribute anything to the type-checking
result if `_t1` is not actually used anywhere, which is only rarely the
case---it requires that the element is referenced by its name from
somewhere else in the template. Consequently, the type-checker can skip
generating this statement altogether for most DOM elements.

The effect of this optimization is significant in several phases:
1. Less type-check code to generate
2. Less type-check code to emit and parse again
3. No expensive type inference to perform for the call expression

The effect on phase 3 is the most significant here, as type-checking is
not currently incremental in the sense that only phases 1 and 2 can
be reused from a prior compilation. The actual type-checking of all
templates in phase 3 needs to be repeated on each incremental
compilation, so any performance gains we achieve here are very
beneficial.

PR Close #38418
2020-08-13 13:28:42 -07:00
Andrew Scott
71138f6004 feat(compiler-cli): Add compiler option to report errors when assigning to restricted input fields (#38249)
The compiler does not currently report errors when there's an `@Input()`
for a `private`, `protected`, or `readonly` directive/component class member.
This change adds an option to enable reporting errors when a template
attempts to bind to one of these restricted input fields.

PR Close #38249
2020-08-11 09:55:48 -07:00