Previously, it was not possible to block a partial-linker from trying to
process a declaration that was defined in a newer version of Angular than
that of the partial-linker. For example, if a partial-linker was published as
part of version 12.0.0, there was no way for a partially-compiled declaration
compiled via version 13.0.0 to tell the 12.0.0 linker that it would be invalid
to attempt to process it.
This commit adds a new `minVersion` property to partial-declarations, which is
interpreted as the "minimum partial-linker version" that can process this
declaration. When selecting a partial-linker for such a declaration, the known
linker version ranges are checked to find the most recent linker whose version
range has an overlap with the interpreted declaration range.
This approach allows us to set a minimum version for a declaration, which
can inform an old partial-linker that will it not be able to accurately
process the declaration.
Note that any pre-release part to versions are ignored in this selection
process.
The file-linker can be configured, via the `unknownDeclarationVersionHandling`
property of `LinkerOptions`, to handle such a situation in one of three ways:
- `error` - the version mismatch is a fatal error
- `warn` - a warning is sent to the logger but the most recent partial-linker
will attempt to process the declaration anyway.
- `ignore` - the most recent partial-linker will, silently, attempt to process
the declaration.
The default is to throw an error.
Closes#41497
PR Close#41578
This commit refactors the generated code for class metadata in partial
compilation mode. Instead of emitting class metadata into a top-level
`ɵsetClassMetadata` call guarded by `ngDevMode` flags, the class
metadata is now declared using a top-level `ɵɵngDeclareClassMetadata`
call.
PR Close#41200
This commit changes the partial compilation so that it outputs declaration
calls rather than compiled factory functions.
The JIT compiler and the linker are updated to be able to handle these
new declarations.
PR Close#41231
The `ɵɵInjectorDef` interface is internal and should not be published publicly
as part of libraries. This commit updates the compiler to render an opaque
type, `ɵɵInjectorDeclaration`, for this instead, which appears in the typings
for compiled libraries.
PR Close#41119
Th `ɵɵFactoryDef` type will appear in published libraries, via their typings
files, to describe what type dependencies a DI factory has. The parameters
on this type are used by tooling such as the Language Service to understand
the DI dependencies of the class being created by the factory.
This commit moves the type to the `public_definitions.ts` file alongside
the other types that have a similar role, and it renames it to `ɵɵFactoryDeclaration`
to align it with the other declaration types such as `ɵɵDirectiveDeclaration`
and so on.
PR Close#41119
These types are only used in the generated typings files to provide
information to the Angular compiler in order that it can compile code
in downstream libraries and applications.
This commit aliases these types to `unknown` to avoid exposing the
previous alias types such as `ɵɵDirectiveDef`, which are internal to
the compiler.
PR Close#41119
This commit changes the partial compilation so that it outputs declaration
calls rather than definition calls for NgModules and Injectors.
The JIT compiler and the linker are updated to be able to handle these
new declarations.
PR Close#41080
Previously, injector definitions contained a `factory` property that
was used to create a new instance of the associated NgModule class.
Now this factory has been moved to its own `ɵfac` static property on the
NgModule class itself. This is inline with how directives, components and
pipes are created.
There is a small size increase to bundle sizes for each NgModule class,
because the `ɵfac` takes up a bit more space:
Before:
```js
let a = (() => {
class n {}
return n.\u0275mod = c.Cb({type: n}),
n.\u0275inj = c.Bb({factory: function(t) { return new (t || n) }, imports: [[e.a.forChild(s)], e.a]}),
n
})(),
```
After:
```js
let a = (() => {
class n {}
return n.\u0275fac = function(t) { return new (t || n) },
n.\u0275mod = c.Cb({type: n}),
n.\u0275inj = c.Bb({imports: [[r.a.forChild(s)], r.a]}),
n
})(),
```
In other words `n.\u0275fac = ` is longer than `factory: ` (by 5 characters)
and only because the tooling insists on encoding `ɵ` as `\u0275`.
This can be mitigated in a future PR by only generating the `ɵfac` property
if it is actually needed.
PR Close#41022
This change marks all relevant define* callsites as pure, causing the compiler to
emmit either @__PURE__ or @pureOrBreakMyCode annotation based on whether we are
compiling code annotated for closure or terser.
This change is needed in g3 where we don't run build optimizer but we
need the code to be annotated for the closure compiler.
Additionally this change allows for simplification of CLI and build optimizer as they
will no longer need to rewrite the generated code (there are still other places where
a build optimizer rewrite will be necessary so we can't remove it, we can only simplify it).
PR Close#41096
This commit implements creating of `ɵɵngDeclarePipe()` calls in partial
compilation, and processing of those calls in the linker and JIT compiler.
See #40677
PR Close#40803
If the template parse option `leadingTriviaChars` is configured to
consider whitespace as trivia, any trailing whitespace of an element
would be considered as leading trivia of the subsequent element, such
that its `start` span would start _after_ the whitespace. This means
that the start span cannot be used to mark the end of the current
element, as its trailing whitespace would then be included in its span.
Instead, the full start of the subsequent element should be used.
To harden the tests that for the Ivy parser, the test utility `parseR3`
has been adjusted to use the same configuration for `leadingTriviaChars`
as would be the case in its production counterpart `parseTemplate`. This
uncovered another bug in offset handling of the interpolation parser,
where the absolute offset was computed from the start source span
(which excludes leading trivia) whereas the interpolation expression
would include the leading trivia. As such, the absolute offset now also
uses the full start span.
Fixes#39148
PR Close#40513
The `template` and `isInline` fields were previously stored in a nested
object, which was initially done to accommodate for additional template
information to support accurate source maps for external templates. In
the meantime the source mapping has been accomplished in a different
way, and I feel this flattened structure is simpler and smaller so is
preferable over the nested object. This change also makes the `isInline`
property optional with a default value of `false`.
PR Close#40383
The types of directives and pipes that are used in a component's
template may be emitted into the partial declaration wrapped inside a
closure, which is needed when the type is declared later in the module.
This poses a problem for JIT compilation of partial declarations, as
this closure is indistinguishable from a class reference itself. To mark
the forward reference function as such, this commit changes the partial
declaration codegen to emit a `forwardRef` invocation wrapped around
the closure, which ensures that the closure is properly tagged as a
forward reference. This allows the forward reference to be treated as
such during JIT compilation.
PR Close#40117
Prior to this change, the `setClassMetadata` call would be invoked
inside of an IIFE that was marked as pure. This allows the call to be
tree-shaken away in production builds, as the `setClassMetadata` call
is only present to make the original class metadata available to the
testing infrastructure. The pure marker is problematic, though, as the
`setClassMetadata` call does in fact have the side-effect of assigning
the metadata into class properties. This has worked under the assumption
that only build optimization tools perform tree-shaking, however modern
bundlers are also able to elide calls that have been marked pure so this
assumption does no longer hold. Instead, an `ngDevMode` guard is used
which still allows the call to be elided but only by tooling that is
configured to consider `ngDevMode` as constant `false` value.
PR Close#39987
These tests started failing because they had type-check
errors in their templates, and a recent commit turned on
full template type-checking by default.\
This commit fixes those templates and updates the expected
files as necessary.
PR Close#40040
These tests do not pass the typecheck phase of the compiler and fail.
The option to disable typechecking was removed recently so these tests
need to be fixed to be valid applications.
PR Close#40033
This test migrates source-mapping tests to the new compliance test framework.
The original tests are found in the file at:
`packages/compiler-cli/test/ngtsc/template_mapping_spec.ts`.
These new tests also check the mappings resulting from partial compilation
followed by linking, after flattening the pair of source-maps that each
process generates.
Note that there are some differences between the mappings for full compile
and linked compile modes, due to how TypeScript and Babel use source-span
information on AST nodes. To accommodate this, there are two expectation
files for most of these source files.
PR Close#39939