The golden files for the partial compliance tests need to be updated
with individual Bazel run invocations, which is not very ergonomic when
a large number of golden files need to updated. This commit adds a
script to query the Bazel targets that update the goldens and then runs
those targets sequentially.
PR Close#39989
This test migrates source-mapping tests to the new compliance test framework.
The original tests are found in the file at:
`packages/compiler-cli/test/ngtsc/template_mapping_spec.ts`.
These new tests also check the mappings resulting from partial compilation
followed by linking, after flattening the pair of source-maps that each
process generates.
Note that there are some differences between the mappings for full compile
and linked compile modes, due to how TypeScript and Babel use source-span
information on AST nodes. To accommodate this, there are two expectation
files for most of these source files.
PR Close#39939
This commit allows compliance test-cases to be written that specify
source-map mappings between the source and generated code.
To check a mapping, add a `// SOURCE:` comment to the end of a line:
```
<generated code> // SOURCE: "<source-url>" <source code>
```
The generated code will still be checked, stripped of the `// SOURCE` comment,
as normal by the `expectEmit()` helper.
In addition, the source-map segments are checked to ensure that there is a
mapping from `<generated code>` to `<source code>` found in the file at
`<source-url>`.
Note:
* The source-url should be absolute, with the directory containing the
TEST_CASES.json file assumed to be `/`.
* Whitespace is important and will be included when comparing the segments.
* There is a single space character between each part of the line.
* Newlines within a mapping must be escaped since the mapping and comment
must all appear on a single line of this file.
PR Close#39939
Previously one could set a flag in a `TEST_CASES.json` file to exclude
the test-cases from being run if the input files were being compiled
partially and then linked.
There are also scenarios where one might want to exclude test-cases
from "full compile" mode test runs.
This commit changes the compliance test tooling to support a new
property `compilationModeFilter`, which is an array containing one or
more of `"full compile"` and `"linked compile"`. Only the tests
whose `compilationModeFilter` array contains the current compilation
mode will be run.
PR Close#39939
Previously files were serialized with an extra newline seperator that
was not removed when parsing. This caused the parsed file to start with
an extra newline that invalidated its source-map.
Also, the splitting was producing an empty entry at the start of the extracted
golden files which is now ignored.
PR Close#39939
The schema accidentally included the `expectedErrors` and `extraCheck`
properties below the `files` property instead of below the `expectations`
property.
PR Close#39939
Add a TaggedTemplateExpr to represent tagged template literals in
Angular's syntax tree (more specifically Expression in output_ast.ts).
Also update classes that implement ExpressionVisitor to add support for
tagged template literals in different contexts, such as JIT compilation
and conversion to JS.
Partial support for tagged template literals had already been
implemented to support the $localize tag used by Angular's i18n
framework. Where applicable, this code was refactored to support
arbitrary tags, although completely replacing the i18n-specific support
for the $localize tag with the new generic support for tagged template
literals may not be completely trivial, and is left as future work.
PR Close#39122
Add test for when `checkTypeOfDomReferences = false` to ensure that we
do not regress in behavior at any point. The desired behavior for this
case is that the `TemplateTypeChecker` will honor the user's
configuration and not produce symbols for the dom reference.
PR Close#39539
The partial compiler will add a version number to the objects that are
generated so that the linker can select the appropriate partial linker
class to process the metadata.
Previously this version matching was a simple number check. Now
the partial compilation writes the current Angular compiler version
into the generated metadata, and semantic version ranges are used
to select the appropriate partial linker.
PR Close#39847
This commit adds support in the Ivy Language Service for autocompletion in a
global context - e.g. a {{foo|}} completion.
Support is added both for the primary function `getCompletionsAtPosition` as
well as the detail functions `getCompletionEntryDetails` and
`getCompletionEntrySymbol`. These latter operations are not used yet as an
upstream change to the extension is required to advertise and support this
capability.
PR Close#39250
The newly built compliance test runner was not using the shared source
file cache that was added in b627f7f02e,
which offers a significant performance boost to the compliance test
targets.
PR Close#39956
When the compiler is invoked via ngc or the Angular CLI, its APIs are used
under the assumption that Angular analysis/diagnostics are only requested if
the program has no TypeScript-level errors. A result of this assumption is
that the incremental engine has not needed to resolve changes via its
dependency graph when the program contained broken imports, since broken
imports are a TypeScript error.
The Angular Language Service for Ivy is using the compiler as a backend, and
exercising its incremental compilation APIs without enforcing this
assumption. As a result, the Language Service has run into issues where
broken imports cause incremental compilation to fail and produce incorrect
results.
This commit introduces a mechanism within the compiler to keep track of
files for which dependency analysis has failed, and to always treat such
files as potentially affected by future incremental steps. This is tested
via the Language Service infrastructure to ensure that the compiler is doing
the right thing in the case of invalid imports.
PR Close#39923
Previously, if a component had an external template with a hard error, the
compiler would "forget" the link between that component and its NgModule.
Additionally, the NgModule would be marked as being in error, because the
template issue would prevent the compiler from registering the component
class as a component, so from the NgModule it would look like a declaration
of a non-directive/pipe class. As a combined result, the next incremental
step could fix the template error, but would not refresh diagnostics for the
NgModule, leading to an incrementality issue.
The various facets of this problem were fixed in prior commits. This commit
adds a test verifying the above case works now as expected.
PR Close#39923
To avoid overwhelming a user with secondary diagnostics that derive from a
"root cause" error, the compiler has the notion of a "poisoned" NgModule.
An NgModule becomes poisoned when its declaration contains semantic errors:
declarations which are not components or pipes, imports which are not other
NgModules, etc. An NgModule also becomes poisoned if it imports or exports
another poisoned NgModule.
Previously, the compiler tracked this poisoned status as an alternate state
for each scope. Either a correct scope could be produced, or the entire
scope would be set to a sentinel error value. This meant that the compiler
would not track any information about a scope that was determined to be in
error.
This method presents several issues:
1. The compiler is unable to support the language service and return results
when a component or its module scope is poisoned.
This is fine for compilation, since diagnostics will be produced showing the
error(s), but the language service needs to still work for incorrect code.
2. `getComponentScopes()` does not return components with a poisoned scope,
which interferes with resource tracking of incremental builds.
If the component isn't included in that list, then the NgModule for it will
not have its dependencies properly tracked, and this can cause future
incremental build steps to produce incorrect results.
This commit changes the tracking of poisoned module scopes to use a flag on
the scope itself, rather than a sentinel value that replaces the scope. This
means that the scope itself will still be tracked, even if it contains
semantic errors. A test is added to the language service which verifies that
poisoned scopes can still be used in template type-checking.
PR Close#39923
Previously, if a trait's analysis step resulted in diagnostics, the trait
would be considered "errored" and no further operations, including register,
would be performed. Effectively, this meant that the compiler would pretend
the class in question was actually undecorated.
However, this behavior is problematic for several reasons:
1. It leads to inaccurate diagnostics being reported downstream.
For example, if a component is put into the error state, for example due to
a template error, the NgModule which declares the component would produce a
diagnostic claiming that the declaration is neither a directive nor a pipe.
This happened because the compiler wouldn't register() the component trait,
so the component would not be recorded as actually being a directive.
2. It can cause incorrect behavior on incremental builds.
This bug is more complex, but the general issue is that if the compiler
fails to associate a component and its module, then incremental builds will
not correctly re-analyze the module when the component's template changes.
Failing to register the component as such is one link in the larger chain of
issues that result in these kinds of issues.
3. It lumps together diagnostics produced during analysis and resolve steps.
This is not causing issues currently as the dependency graph ensures the
right classes are re-analyzed when needed, instead of showing stale
diagnostics. However, the dependency graph was not intended to serve this
role, and could potentially be optimized in ways that would break this
functionality.
This commit removes the concept of an "errored" trait entirely from the
trait system. Instead, analyzed and resolved traits have corresponding (and
separate) diagnostics, in addition to potentially `null` analysis results.
Analysis (but not resolution) diagnostics are carried forward during
incremental build operations. Compilation (emit) is only performed when
a trait reaches the resolved state with no diagnostics.
This change is functionally different than before as the `register` step is
now performed even in the presence of analysis errors, as long as analysis
results are also produced. This fixes problem 1 above, and is part of the
larger solution to problem 2.
PR Close#39923
If the testcase has not specified that errors were expected, then any
errors that have occurred should be reported. These errors may have
prevented an output file from being generated, which resulted in hard
to debug test failures due to missing files.
PR Close#39862
The Language Service "find references" currently uses the
`ngtypecheck.ts` suffix to determine if a file is a shim file. Instead,
a better API would be to expose a method in the template type checker
that does this verification so that the LS does not have to "know" about
the typecheck suffix. This also fixes an issue (albeit unlikely) whereby a file
in the user's program that _actually_ is named with the `ngtypecheck.ts`
suffix would have been interpreted as a shim file.
PR Close#39768
This commit adds "find references" functionality to the Ivy integrated
language service. The basic approach is as follows:
1. Generate shims for all files to ensure we find references in shims
throughout the entire program
2. Determine if the position for the reference request is within a
template.
* Yes, it is in a template: Find which node in the template AST the
position refers to. Then find the position in the shim file for that
template node. Pass the shim file and position in the shim file along
to step 3.
* No, the request for references was made outside a template: Forward
the file and position to step 3.
3. (`getReferencesAtTypescriptPosition`): Call the native TypeScript LS
`getReferencesAtPosition`. For each reference that is in a shim file, map those
back to a template location, otherwise return it as-is.
PR Close#39768
There were two issues with the current TCB:
1. The logic for only wrapping the right hand side of the property write
if it was not already a parenthesized expression was incorrect. A
parenthesized expression could still have a trailing comment, and if
that were the case, that span comment would still be ambiguous, as explained
by the comment in the code before `wrapForTypeChecker`.
2. The right hand side of keyed writes was not wrapped in parens at all
PR Close#39768
In order to map the a safe property read's method access in the type check block
directly back to the property in the template source, we need to
include the `SafePropertyRead`'s `nameSpan` with the `ts.propertyAccess` for
the pipe's transform method.
Note that this is specifically relevant to the Language Service's "find
references" feature. As an example, with something like `{{a?.value}}`,
when calling "find references" on the 'value' we want the text
span of the reference to just be `value` rather than the entire source
`a?.value`.
PR Close#39768
In order to map the pipe's `transform` method in the type check block
directly back to the pipe name in the template source, we need to
include the `BindingPipe`'s `nameSpan` with the `ts.methodAccess` for
the pipe's transform method.
Note that this is specifically relevant to the Language Service's "find
references" feature. As an example, with something like `-2.5 | number:'1.0-0'`,,
when calling "find references" on the 'number' pipe we want the text
span of the reference to just be `number` rather than the entire binding
pipe's source `-2.5 | number:'1.0-0'`.
PR Close#39768
Previously this would have just printed that `false` was not equal to
`true`, which, although true, is not very helpful. This commit adds
details about which special check failed together with the generated
code, for easier debugging.
PR Close#39863
This commit provides the machinery for the new file-based compliance test
approach for i18n tests, and migrates the i18n tests to this new format.
PR Close#39661
This commit implements partial compilation of components, together with
linking the partial declaration into its full AOT output.
This commit does not yet enable accurate source maps into external
templates. This requires additional work to account for escape sequences
which is non-trivial. Inline templates that were represented using a
string or template literal are transplated into the partial declaration
output, so their source maps should be accurate. Note, however, that
the accuracy of source maps is not currently verified in tests; this is
also left as future work.
The golden files of partial compilation output have been updated to
reflect the generated code for components. Please note that the current
output should not yet be considered stable.
PR Close#39707
In production mode this flag defaults to `true`, but the compliance
tests override this to `false` unless it is provided. As such, the
linker should also adhere to this default as otherwise the compilation
output would not align with the output of the full tests.
There are still tests that exercise the value of this flag, together
with it being `undefined` to verify the behavior of the actual default
value.
PR Close#39707
The linker does not currently support outputting ES5 syntax, so any
compliance tests that request ES5 output cannot be run in partial
compilation mode. This commit marks these tests as pending.
PR Close#39707
This commit adds the `i18nUseExternalIds` option to the linker options,
as the compliance tests exercise compilation results with and without
this flag enabled. We therefore need to configure the linker to take
this option into account, as otherwise the compliance test output would
not be identical.
Additionally, this commit switches away from spread syntax to set
the default options. This introduced a problem when the user-provided
options object did specify the keys, but with an undefined value. This
would have prevented the default options from being applied.
PR Close#39707
The metadata specification of queries allows for the boolean properties
`first`, `descendants` and `static` to be missing, but the linker did
not account for their omission.
This fix is tested in subsequent commits that implement compilation of
components, at which point this will be covered by the compliance tests.
PR Close#39707
The compilation result of components may have inserted template
functions into the constant pool, which would be inserted into the Babel
AST upon program exit. Babel will then proceed with visiting this newly
inserted subtree, but we have already cleaned up the linker instance
when exiting the program. Any call expressions within the template
functions would then fail to be processed, as a file linker would no
longer be available.
Since the inserted AST subtree is known not to contain yet more partial
declarations, it is safe to skip visiting call expressions when no
file linker is available.
PR Close#39707
The type checker had to do extensive work in resolving the
`NodePath.get` method call for the `NodePath` that had an intersection
type of `ts.VariableDeclarator&{init:t.Expression}`. The `NodePath.get`
method is typed using a conditional type which became expensive to
compute with this intersection type. As a workaround, the original
`init` property is explicitly omitted which avoids the performance
cliff. This brings down the compile time by 15s.
PR Close#39707
The JSON schema reference was off-by-one, preventing IDEs from finding
the file and offering suggestions and documentation. Additionally the
name of the golden file was slightly off.
PR Close#39707
If a template declares a reference to a missing target then referring to
that reference from elsewhere in the template would crash the template
type checker, due to a regression introduced in #38618. This commit
fixes the crash by ensuring that the invalid reference will resolve to
a variable of type any.
Fixes#39744
PR Close#39805
When the `preserveWhitespaces` is not true, the template parser will
process the parsed AST nodes to remove excess whitespace. Since the
generated `goog.getMsg()` statements rely upon the AST nodes after
this whitespace is removed, the i18n extraction must make a second pass.
Previously this resulted in innacurrate source-spans for the i18n text and
placeholder nodes that were extracted in the second pass.
This commit fixes this by reusing the source-spans from the first pass
when extracting the nodes in the second pass.
Fixes#39671
PR Close#39717
Consumers of the `TemplateTypeChecker` API could be interested in
mapping from a shim location back to the original source location in the
template. One concrete example of this use-case is for the "find
references" action in the Language Service. This will return locations
in the TypeScript shim file, and we will then need to be able to map the
result back to the template.
PR Close#39715
Both `ReferenceSymbol` and `VariableSymbol` have two locations of
interest to an external consumer.
1. The location for the initializers of the local TCB variables allow consumers
to query the TypeScript Language Service for information about the initialized type of the variable.
2. The location of the local variable itself (i.e. `_t1`) allows
consumers to query the TypeScript LS for references to that variable
from within the template.
PR Close#39715