This commit consolidates the options that can modify the
parsing of text (e.g. HTML, Angular templates, CSS, i18n)
into an AST for further processing into a single `options`
hash.
This makes the code cleaner and more readable, but also
enables us to support further options to parsing without
triggering wide ranging changes to code that should not
be affected by these new options. Specifically, it will let
us pass information about the placement of a template
that is being parsed in its containing file, which is essential
for accurate SourceMap processing.
PR Close#28055
Note that this fixes `compiler-cli` tests within `compiler-cli/test`,
but there seem to be remaining `ngcc` tests within `compiler-cli/src`
which aren't working on Windows. This is out-of-scope for this commit.
PR Close#28352
Since we recently removed the `test.sh` script, and now run
all tests with Bazel, we can remove the unused logic that makes
compiler-cli tests pass in non-Bazel.
This cleans up the tests, and also makes it easier to write tests
without worrying about two ways of the Angular package output
(Bazel `ng_package` rules vs. old `build.sh` logic of building)
PR Close#28352
Typescript 3.2 introduced BigInt type, and consequently the
implementation for checkExpressionWorker() in checkers.ts is refactored.
For NumberLiteral and StringLiteral types, 'text' filed must be present
in the Node type, therefore they must be LiteralLikeNode instead of
Node.
PR Close#27536
These tests are not relevant to Ivy:
//packages/compiler-cli/test/diagnostics:check_types
//packages/compiler-cli/test/diagnostics:expression_diagnostics
//packages/compiler-cli/test/transformers:test
//packages/compiler-cli/test:extract_i18n
The //packages/compiler-cli/test:ngtools_api test has 2 specs, one of
which passes and the other of which depends on ngtsc supporting lazy
routes. It's now disabled with fixmeIvy().
PR Close#27301
We are close enough to blacklist a few test targets, rather than whitelist targets to run...
Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.
This is the updated overview of ivy related bazel tags:
- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local
PR Close#26471
With these changes, the types are a little stricter now and also not
compatible with Protractor's jasmine-like syntax. So, we have to also
use `@types/jasminewd2` for e2e tests (but not for non-e2e tests).
I also had to "augment" `@types/jasminewd2`, because the latest
typings from [DefinitelyTyped][1] do not reflect the fact that the
`jasminewd2` version (v2.1.0) currently used by Protractor supports
passing a `done` callback to a spec.
[1]: 566e039485/types/jasminewd2/index.d.ts (L9-L15)Fixes#23952Closes#24733
PR Close#19904
All errors for existing fields have been detected and suppressed with a
`!` assertion.
Issue/24571 is tracking proper clean up of those instances.
One-line change required in ivy/compilation.ts, because it appears that
the new syntax causes tsickle emitted node to no longer track their
original sourceFiles.
PR Close#24572
The AsyncPipe type signature was changed to allow
deferred creation of promises and observalbes that
is supported by the implementation by allowing
`Promise<T>|null|undefined` and by allowing
`Observable<T>|null|undefined`.
PR Close#22169
Allows a directive to use the expression passed directly to a property
as a guard instead of filtering the type through a type expression.
This more accurately matches the intent of the ngIf usage of its template
enabling better type inference.
Moved NgIf to using this type of guard instead of a function guard.
Closes: #20967
`$any()` can now be used in a binding expression to disable type
checking for the rest of the expression. This similar to `as any` in
TypeScript and allows expression that work at runtime but do not
type-check.
PR Close#20876
Structural directives can now specify a type guard that describes
what types can be inferred for an input expression inside the
directive's template.
NgIf was modified to declare an input guard on ngIf.
After this change, `fullTemplateTypeCheck` will infer that
usage of `ngIf` expression inside it's template is truthy.
For example, if a component has a property `person?: Person`
and a template of `<div *ngIf="person"> {{person.name}} </div>`
the compiler will no longer report that `person` might be null or
undefined.
The template compiler will generate code similar to,
```
if (NgIf.ngIfTypeGuard(instance.person)) {
instance.person.name
}
```
to validate the template's use of the interpolation expression.
Calling the type guard in this fashion allows TypeScript to infer
that `person` is non-null.
Fixes: #19756?
PR Close#20702
The type-check block generated with `"fullTemplateTypeCheck"` was
invalid if the it contained a template ref as would be generated
using the `else` micro-syntax of `NgIf`.
Fixes: #19485
PR Close#20463
Usages of `NgTools_InternalApi_NG_2` from `@angular/compiler-cli` will now
throw an error.
Adds `listLazyRoutes` to `@angular/compiler-cli/ngtools2.ts` for getting
the lazy routes of a `ng.Program`.
PR Close#19836
With this commit `ngc` is used instead of `tsc-wrapped` for
collecting metadata and tsickle rewriting and `tsc-wrapped`
is removed from the repository.
`@angular/tsc-wrapped@5` is now deprecated and is no longer
used, updated, or maintained as part as of Angular 5.x.x.
`@angular/tsc-wrapped@4` is still maintained and required by
Angular 4.x.x and will be maintained as long as 4.x.x is in
LTS.
PR Close#19298
- don’t regenerate code for .d.ts files when
an oldProgram is passed to `createProgram`
- cache `fileExists` / `getSourceFile` / `readFile` in watch mode
- refactor tests to share common code in `test_support`
- support `—diagnostic` command line to print total time
used per watch mode compilation.
PR Close#19275
We now create 2 programs with exactly the same fileNames and
exactly the same `import` / `export` declarations,
allowing TS to reuse the structure of first program
completely. When passing in an oldProgram and the files didn’t change,
TS can also reuse the old program completely.
This is possible buy adding generated files to TS
in `host.geSourceFile` via `ts.SourceFile.referencedFiles`.
This commit also:
- has a minor side effect on how we generate shared stylesheets:
- previously every import in a stylesheet would generate a new
`.ngstyles.ts` file.
- now, we only generate 1 `.ngstyles.ts` file per entry in `@Component.styleUrls`.
This was required as we need to be able to determine the program files
without loading the resources (which can be async).
- makes all angular related methods in `CompilerHost`
optional, allowing to just use a regular `ts.CompilerHost` as `CompilerHost`.
- simplifies the logic around `Compiler.analyzeNgModules` by introducing `NgAnalyzedFile`.
Perf impact: 1.5s improvement in compiling angular io
PR Close#19275
This speeds up the compilation process significantly.
Also introduces a new option `fullTemplateTypeCheck` to do more checks in templates:
- check expressions inside of templatized content (e.g. inside of `<div *ngIf>`).
- check the arguments of calls to the `transform` function of pipes
- check references to directives that were exposed as variables via `exportAs`
PR Close#19152
- temporarily keeps the old sources under packages/tsc-wrapped
until the build scripts are changed to use compiler-cli everywhere.
- removes the compiler options `disableTransformerPipeline` that was introduced
in a previous beta of Angular 5, i.e. the transformer based compiler
is now always enabled.
PR Close#18966
With this change ngc now accepts a `-w` or a `--watch`
command-line option that will automatically perform a
recompile whenever any source files change on disk.
PR Close#18818
With this commit the compiler will "lower" expressions into exported
variables for values the compiler does not need to know statically
in order to be able to generate a factory. For example:
```
providers: [{provider: 'token', useValue: calculated()}]
```
produced an error as the expression `calculated()` is not supported
by the compiler because `calculated` is not a
[known function](https://angular.io/guide/metadata#annotationsdecorators)
With this commit this is rewritten, during emit of the .js file, into
something like:
```
export var ɵ0 = calculated();
...
provdiers: [{provider: 'token', useValue: ɵ0}]
```
The compiler then will now generate a reference to the exported `ɵ0`
instead of failing to evaluate `calculated()`.
PR Close#18905
With this change ngc now accepts a `-w` or a `--watch`
command-line option that will automatically perform a
recompile whenever any source files change on disk.
PR Close#18818
With this commit the compiler will "lower" expressions into exported
variables for values the compiler does not need to know statically
in order to be able to generate a factory. For example:
```
providers: [{provider: 'token', useValue: calculated()}]
```
produced an error as the expression `calculated()` is not supported
by the compiler because `calculated` is not a
[known function](https://angular.io/guide/metadata#annotationsdecorators)
With this commit this is rewritten, during emit of the .js file, into
something like:
```
export var ɵ0 = calculated();
...
provdiers: [{provider: 'token', useValue: ɵ0}]
```
The compiler then will now generate a reference to the exported `ɵ0`
instead of failing to evaluate `calculated()`.
PR Close#18905
This also allows to customize the filePaths in `.ngsummary.json` file
via the new methods `toSummaryFileName` and `fromSummaryFileName`
on the `CompilerHost`.
Refactoring the compiler to use transformers moves the code generation
after type-checking which suppresses the errors TypeScript would
generate in the user code.
`TypeChecker` currently produces the same factory code that was
generated prior the switch to transfomers, getting back the same
diagnostics as before. The refactoring will allow the code to
diverge from the factory code and allow better diagnostic error
messages than was previously possible by type-checking the factories.