81 Commits

Author SHA1 Message Date
Andrew Scott
a86ca4fe04 feat(language-service): Enable renaming of pipes (#40523)
This commit updates the logic in the LS renaming to handle renaming of
pipes, both from the name expression in the pipe metadata as well as
from the template.

The approach here is to introduce a new concept for renaming: an
"indirect" rename. In this type of rename, we find rename locations
in with the native TS Language Service using a different node than the
one we are renaming. Using pipes as an example, if we want to rename the
pipe name from the string literal expression, we use the transform
method to find rename locations rather than the string literal itself
(which will not return any results because it's just a string).

So the general approach is:
* Determine the details about the requested rename location, i.e. the
  targeted template node and symbol for a template rename, or the TS
  node for a rename outside a template.
* Using the details of the location, determine if the node is attempting
  to rename something that is an indirect rename (pipes, selectors,
  bindings). Other renames are considered "direct" and we use whatever
  results the native TSLS returns for the rename locations.
* In the case of indirect renames, we throw out results that do not
  appear in the templates (in this case, the shim files). These results will be
  for the "indirect" rename that we don't want to touch, but are only
  using to find template results.
* Create an additional rename result for the string literal expression
  that is used for the input/output alias, the pipe name, or the
  selector.

 Note that renaming is moving towards being much more accurate in its
 results than "find references". When the approach for renaming
 stabilizes, we may want to then port the changes back to being shared
 with the approach for retrieving references.

PR Close #40523
2021-05-06 17:54:13 -04:00
Pete Bacon Darwin
94a9985b8b refactor(compiler-cli): having an ɵinj field no longer guarantees injectability (#41231)
When `ɵngDeclareInjector()` was implemented, the `factory` was moved
out to the `ɵfac` static property on the class. This check was not updated.

PR Close #41231
2021-03-30 16:46:37 -07:00
Pete Bacon Darwin
88683702e5 refactor(core): rename ...WithMeta types to ...Declaration and alias to unknown (#41119)
These types are only used in the generated typings files to provide
information to the Angular compiler in order that it can compile code
in downstream libraries and applications.

This commit aliases these types to `unknown` to avoid exposing the
previous alias types such as `ɵɵDirectiveDef`, which are internal to
the compiler.

PR Close #41119
2021-03-22 08:57:18 -07:00
Alex Rickabaugh
c55bf4a4a3 refactor(compiler-cli): identify structural directives (#40032)
This commit introduces an `isStructural` flag on directive metadata, which
is `true` if the directive injects `TemplateRef` (and thus is at least
theoretically usable as a structural directive). The flag is not used for
anything currently, but will be utilized by the Language Service to offer
better autocompletion results for structural directives.

PR Close #40032
2020-12-14 12:08:41 -08:00
Alex Rickabaugh
0823622202 fix(compiler-cli): track poisoned scopes with a flag (#39923)
To avoid overwhelming a user with secondary diagnostics that derive from a
"root cause" error, the compiler has the notion of a "poisoned" NgModule.
An NgModule becomes poisoned when its declaration contains semantic errors:
declarations which are not components or pipes, imports which are not other
NgModules, etc. An NgModule also becomes poisoned if it imports or exports
another poisoned NgModule.

Previously, the compiler tracked this poisoned status as an alternate state
for each scope. Either a correct scope could be produced, or the entire
scope would be set to a sentinel error value. This meant that the compiler
would not track any information about a scope that was determined to be in
error.

This method presents several issues:

1. The compiler is unable to support the language service and return results
when a component or its module scope is poisoned.

This is fine for compilation, since diagnostics will be produced showing the
error(s), but the language service needs to still work for incorrect code.

2. `getComponentScopes()` does not return components with a poisoned scope,
which interferes with resource tracking of incremental builds.

If the component isn't included in that list, then the NgModule for it will
not have its dependencies properly tracked, and this can cause future
incremental build steps to produce incorrect results.

This commit changes the tracking of poisoned module scopes to use a flag on
the scope itself, rather than a sentinel value that replaces the scope. This
means that the scope itself will still be tracked, even if it contains
semantic errors. A test is added to the language service which verifies that
poisoned scopes can still be used in template type-checking.

PR Close #39923
2020-12-03 13:42:13 -08:00
Alan Agius
0929099e41 refactor(compiler-cli): remove TypeScript 3.9 workarounds (#39586)
With this change we remove code which was used to support both TypeScript 3.9 and TypeScript 4.0

This code is now no longer needed because G3 is on TypeScript 4.0

PR Close #39586
2020-11-06 15:26:51 -08:00
Andrew Scott
3a1d36cce3 refactor(language-service): Use compiler APIs in Ivy to get definitions for external resources (#39476)
Rather than re-reading component metadata that was already interpreted
by the Ivy compiler, the Language Service should instead use the
compiler APIs to get information it needs about the metadata.

PR Close #39476
2020-11-06 09:17:33 -08:00
Andrew Scott
beb935613e refactor(compiler-cli): Store inline templates and styles in the resource registry (#39482)
The Language Service is not only interested in external resources, but
also inline styles and templates. By storing the expression of the
inline resources, we can more easily determine if a given position is
part of the inline template/style expression.

PR Close #39482
2020-10-30 09:58:21 -07:00
Andrew Scott
371fb9a955 refactor(compiler-cli): Track external component resources in ResourceRegistry (#39373)
In addition to the template mapping that already existed, we want to also track the mapping for external
style files. We also store the `ts.Expression` in the registry so external tools can look up a resource
on a component by expression and avoid reading the value.

PR Close #39373
2020-10-28 10:57:14 -07:00
Alex Rickabaugh
8f11b516f8 refactor(compiler-cli): API for getting components from a template file (#39002)
This commit adds an API to `NgCompiler`, a method called
`getComponentsWithTemplateFile`. Given a filesystem path to an external
template file, it retrieves a `Set` (actually a `ReadonlySet`) of component
declarations which are using this template. In most cases, this will only be
a single component.

This information is easily determined by the compiler during analysis, but
is hard for a lot of Angular tooling (e.g. the language service) to infer
independently. Therefore, it makes sense to expose this as a compiler API.

PR Close #39002
2020-09-30 09:26:05 -04:00
JoostK
297c060ae7 perf(compiler-cli): optimize computation of type-check scope information (#38539)
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.

This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.

PR Close #38539
2020-09-14 11:54:40 -07:00
Andrew Scott
b0ca3cd0c4 Revert "perf(compiler-cli): optimize computation of type-check scope information (#38539)" (#38765)
This reverts commit ba95b79a218b79b22f070b90e8cdfddaa18f6576.
internal failure:
https://test.corp.google.com/ui#id=OCL:329948619:BASE:329967516:1599160428139:d63165ae

PR Close #38765
2020-09-09 12:21:22 -07:00
JoostK
ba95b79a21 perf(compiler-cli): optimize computation of type-check scope information (#38539)
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.

This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.

PR Close #38539
2020-09-08 14:50:38 -07:00
Alex Rickabaugh
4007422cc6 fix(compiler): correct confusion between field and property names (#38685)
The `R3TargetBinder` accepts an interface for directive metadata which
declares types for `input` and `output` objects. These types convey the
mapping between the property names for an input or output and the
corresponding property name on the component class. Due to
`R3TargetBinder`'s requirements, this mapping was specified with property
names as keys and field names as values.

However, because of duck typing, this interface was accidentally satisifed
by the opposite mapping, of field names to property names, that was produced
in other parts of the compiler. This form more naturally represents the data
model for inputs.

Rather than accept the field -> property mapping and invert it, this commit
introduces a new abstraction for such mappings which is bidirectional,
eliminating the ambiguous plain object type. This mapping uses new,
unambiguous terminology ("class property name" and "binding property name")
and can be used to satisfy both the needs of the binder as well as those of
the template type-checker (field -> property).

A new test ensures that the input/output metadata produced by the compiler
during analysis is directly compatible with the binder via this unambiguous
new interface.

PR Close #38685
2020-09-08 11:43:02 -07:00
Alan Agius
0fc44e0436 feat(compiler-cli): add support for TypeScript 4.0 (#38076)
With this change we add support for TypeScript 4.0

PR Close #38076
2020-08-24 13:06:59 -07:00
Andrew Scott
71138f6004 feat(compiler-cli): Add compiler option to report errors when assigning to restricted input fields (#38249)
The compiler does not currently report errors when there's an `@Input()`
for a `private`, `protected`, or `readonly` directive/component class member.
This change adds an option to enable reporting errors when a template
attempts to bind to one of these restricted input fields.

PR Close #38249
2020-08-11 09:55:48 -07:00
JoostK
fa0104017a refactor(compiler-cli): only use type constructors for directives with generic types (#38249)
Prior to this change, the template type checker would always use a
type-constructor to instantiate a directive. This type-constructor call
serves two purposes:

1. Infer any generic types for the directive instance from the inputs
   that are passed in.
2. Type check the inputs that are passed into the directive's inputs.

The first purpose is only relevant when the directive actually has any
generic types and using a type-constructor for these cases inhibits
a type-check performance penalty, as a type-constructor's signature is
quite complex and needs to be generated for each directive.

This commit refactors the generated type-check blocks to only generate
a type-constructor call for directives that have generic types. Type
checking of inputs is achieved by generating individual statements for
all inputs, using assignments into the directive's fields.

Even if a type-constructor is used for type-inference of generic types
will the input checking also be achieved using the individual assignment
statements. This is done to support the rework of the language service,
which will start to extract symbol information from the type-check
blocks.

As a future optimization, it may be possible to reduce the number of
inputs passed into a type-constructor to only those inputs that
contribute the the type-inference of the generics. As this is not a
necessity at the moment this is left as follow-up work.

Closes #38185

PR Close #38249
2020-08-11 09:55:48 -07:00
Joey Perrott
d1ea1f4c7f build: update license headers to reference Google LLC (#37205)
Update the license headers throughout the repository to reference Google LLC
rather than Google Inc, for the required license headers.

PR Close #37205
2020-05-26 14:26:58 -04:00
Alex Rickabaugh
0a69a2832b style(compiler-cli): reformat of codebase with new clang-format version (#36520)
This commit reformats the packages/compiler-cli tree using the new version
of clang-format.

PR Close #36520
2020-04-08 14:51:08 -07:00
crisbeto
dcc8ff4ce7 feat(ivy): throw compilation error when providing undecorated classes (#34460)
Adds a compilation error if the consumer tries to pass in an undecorated class into the `providers` of an `NgModule`, or the `providers`/`viewProviders` arrays of a `Directive`/`Component`.

PR Close #34460
2019-12-18 15:04:49 -08:00
Alex Rickabaugh
763f8d470a fix(ivy): validate the NgModule declarations field (#34404)
This commit adds three previously missing validations to
NgModule.declarations:

1. It checks that declared classes are actually within the current
   compilation.

2. It checks that declared classes are directives, components, or pipes.

3. It checks that classes are declared in at most one NgModule.

PR Close #34404
2019-12-17 11:39:48 -08:00
JoostK
22ad701134 fix(ivy): inherit static coercion members from base classes (#34296)
For Ivy's template type checker it is possible to let a directive
specify static members to allow a wider type for some input:

```typescript
export class MatSelect {
  @Input() disabled: boolean;

  static ngAcceptInputType_disabled: boolean | string;
}
```

This allows a binding to the `MatSelect.disabled` input to be of type
boolean or string, whereas the `disabled` property itself is only of
type boolean.

Up until now, any static `ngAcceptInputType_*` property was not
inherited for subclasses of a directive class. This is cumbersome, as
the directive's inputs are inherited, so any acceptance member should as
well. To resolve this limitation, this commit extends the flattening of
directive metadata to include the acceptance members.

Fixes #33830
Resolves FW-1759

PR Close #34296
2019-12-10 16:31:23 -08:00
JoostK
a42057d0f8 fix(ivy): support abstract directives in template type checking (#33131)
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.

Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.

This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.

Fixes #30080

PR Close #33131
2019-10-24 12:44:30 -07:00
Alex Rickabaugh
f1269d98dc feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static field with the name ngAcceptInputType_value. If such a field is found
the type-checking expression for the input will use the static field's type
instead of the type for the @Input field,allowing for the expression of a
type conversion between the binding expression and the value being written
to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngAcceptInputType_value: {toString(): string};
}
```

FW-1475 #resolve

PR Close #33243
2019-10-24 09:49:38 -07:00
Matias Niemelä
c0ebecf54d revert: feat(ivy): input type coercion for template type-checking (#33243) (#33299)
This reverts commit 1b4eaea6d4fa00a722eaed011c904e5cca048501.

PR Close #33299
2019-10-21 12:00:24 -04:00
Alex Rickabaugh
1b4eaea6d4 feat(ivy): input type coercion for template type-checking (#33243)
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.

For example, you could imagine an input of the form:

```typescript
@Input() get value(): string {
  return this._value;
}

set value(v: {toString(): string}) {
  this._value = v.toString();
}
```

Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.

Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.

To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.

To solve the case above, for example, MatInput might write:

```typescript
class MatInput {
  // rest of the directive...

  static ngCoerceInput_value(value: {toString(): string}): string {
    return null!;
  }
}
```

FW-1475 #resolve

PR Close #33243
2019-10-21 11:25:07 -04:00
Kara Erickson
fc93dafab1 refactor(core): rename ngModuleDef to ɵmod (#33142)
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson
d62eff7316 refactor(core): rename ngPipeDef to ɵpipe (#33142)
Pipe defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngPipeDef to pipe. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

PR Close #33142
2019-10-14 23:08:10 +00:00
Kara Erickson
1a67d70bf8 refactor(core): rename ngDirectiveDef to ɵdir (#33110)
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33110
2019-10-14 16:20:11 +00:00
Kara Erickson
64fd0d6db9 refactor(core): rename ngComponentDef to ɵcmp (#33088)
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.

This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.

Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.

PR Close #33088
2019-10-11 15:45:22 -07:00
Alex Rickabaugh
0677cf0cbe feat(ivy): use the schema registry to check DOM bindings (#32171)
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.

With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.

PR Close #32171
2019-08-22 10:12:45 -07:00
atscott
cfed0c0cf1 fix(ivy): Support selector-less directive as base classes (#32125)
Following #31379, this adds support for directives without a selector to
Ivy.

PR Close #32125
2019-08-20 09:56:54 -07:00
JoostK
e9ead2bc09 feat(ivy): more accurate type narrowing for ngIf directive (#30248)
A structural directive can specify a template guard for an input, such that
the type of that input's binding can be narrowed based on the guard's return
type. Previously, such template guards could only be methods, of which an
invocation would be inserted into the type-check block (TCB). For `NgIf`,
the template guard narrowed the type of its expression to be `NonNullable`
using the following declaration:

```typescript
export declare class NgIf {
  static ngTemplateGuard_ngIf<E>(dir: NgIf, expr: E): expr is NonNullable<E>
}
```

This works fine for usages such as `*ngIf="person"` but starts to introduce
false-positives when e.g. an explicit non-null check like
`*ngIf="person !== null"` is used, as the method invocation in the TCB
would not have the desired effect of narrowing `person` to become
non-nullable:

```typescript
if (NgIf.ngTemplateGuard_ngIf(directive, ctx.person !== null)) {
  // Usages of `ctx.person` within this block would
  // not have been narrowed to be non-nullable.
}
```

This commit introduces a new strategy for template guards to allow for the
binding expression itself to be used as template guard in the TCB. Now,
the TCB generated for `*ngIf="person !== null"` would look as follows:

```typescript
if (ctx.person !== null) {
  // This time `ctx.person` will successfully have
  // been narrowed to be non-nullable.
}
```

This strategy can be activated by declaring the template guard as a
property declaration with `'binding'` as literal return type.

See #30235 for an example where this led to a false positive.

PR Close #30248
2019-05-16 09:48:40 -07:00
Alex Rickabaugh
cd1277cfb7 fix(ivy): include directive base class metadata when generating TCBs (#29698)
Previously the template type-checking code only considered the metadata of
directive classes actually referenced in the template. If those directives
had base classes, any inputs/outputs/etc of the base classes were not
tracked when generating the TCB. This resulted in bindings to those inputs
being incorrectly attributed to the host component or element.

This commit uses the new metadata package to follow directive inheritance
chains and use the full metadata for a directive for TCB generation.

Testing strategy: Template type-checking tests included.

PR Close #29698
2019-04-19 11:15:25 -07:00
Alex Rickabaugh
9277afce61 refactor(ivy): move metadata registration to its own package (#29698)
Previously, metadata registration (the recording of collected metadata
during analysis of directives, pipes, and NgModules) was only used to
produce the `LocalModuleScope`, and thus was handled by the
`LocalModuleScopeRegistry`.

However, the template type-checker also needs information about registered
directives, outside of the NgModule scope determinations. Rather than
reuse the scope registry for an unintended purpose, this commit introduces
new abstractions for metadata registration and lookups in a separate
'metadata' package, which the scope registry implements.

This paves the way for a future commit to make use of this metadata for the
template type-checking system.

Testing strategy: this commit is a refactoring which introduces no new
functionality, so existing tests are sufficient.

PR Close #29698
2019-04-19 11:15:25 -07:00
Alex Rickabaugh
2a6108af97 refactor(ivy): split apart the 'metadata' package in the ngtsc compiler (#27743)
This refactoring moves code around between a few of the ngtsc subpackages,
with the goal of having a more logical package structure. Additional
interfaces are also introduced where they make sense.

The 'metadata' package formerly contained both the partial evaluator,
the TypeScriptReflectionHost as well as some other reflection functions,
and the Reference interface and various implementations. This package
was split into 3 parts.

The partial evaluator now has its own package 'partial_evaluator', and
exists behind an interface PartialEvaluator instead of a top-level
function. In the future this will be useful for reducing churn as the
partial evaluator becomes more complicated.

The TypeScriptReflectionHost and other miscellaneous functions have moved
into a new 'reflection' package. The former 'host' package which contained
the ReflectionHost interface and associated types was also merged into this
new 'reflection' package.

Finally, the Reference APIs were moved to the 'imports' package, which will
consolidate all import-related logic in ngtsc.

PR Close #27743
2019-01-08 16:36:18 -08:00
Pete Bacon Darwin
cfb8c17511 feat(ivy): ngcc - map functions as well as classes from source to typings (#27326)
To support updating `ModuleWithProviders` calls,
we need to be able to map exported functions between
source and typings files, as well as classes.

PR Close #27326
2018-12-20 11:58:49 -05:00
JoostK
52544ffaa3 fix(ivy): ngcc generates setClassMetadata calls for ES5 bundles (#27438)
ngcc would feed ngtsc with the function declaration inside of an IIFE as
that is considered the class symbol's declaration node, according to
TypeScript's `ts.Symbol.valueDeclaration`. ngtsc however only considered
variable decls and actual class decls as potential class declarations,
so given the function declaration node it would fail to generate the
`setClassMetadata` call.

ngtsc no longer makes its own assumptions about what classes look like,
but always asks the reflection host to yield this kind of information.

PR Close #27438
2018-12-17 09:35:16 -08:00
JoostK
a8ebc837ea fix(ivy): support complex type nodes in ModuleWithProviders (#27562)
With ngcc's ability to fixup pre-Ivy ModuleWithProviders such that they
include a reference to the NgModule type, the type may become a qualified
name:

```
import {ModuleWithProviders} from '@angular/core';
import * as ngcc0 from './module';

export declare provide(): ModuleWithProviders<ngcc0.Module>;
```

ngtsc now takes this situation into account when reflecting a
ModuleWithProvider's type argument.

PR Close #27562
2018-12-14 10:23:43 -08:00
Igor Minar
7fabe4429d fix(ivy): add support for optional nullable injection tokens (#27552)
FW-778 #resolve

PR Close #27552
2018-12-12 13:04:29 -08:00
JoostK
75723d5c89 feat(ivy): ngtsc support for static resolution of array.slice() (#27158)
For ngcc's processing of ES5 bundles, the spread syntax has been
downleveled from `[...ARRAY]` to become `ARRAY.slice()`. This commit
adds basic support for static resolution of such call.

PR Close #27158
2018-12-03 14:38:41 -08:00
JoostK
c8c8648abf fix(ivy): prevent ngcc from referencing missing ɵsetClassMetadata (#27055)
When ngtsc compiles @angular/core, it rewrites core imports to the
r3_symbols.ts file that exposes all internal symbols under their
external name. When creating the FESM bundle, the r3_symbols.ts file
causes the external symbol names to be rewritten to their internal name.

Under ngcc compilations of FESM bundles, the indirection of
r3_symbols.ts is no longer in place such that the external names are
retained in the bundle. Previously, the external name `ɵdefineNgModule`
was explicitly declared internally to resolve this issue, but the
recently added `setClassMetadata` was not declared as such, causing
runtime errors.

Instead of relying on the r3_symbols.ts file to perform the rewrite of
the external modules to their internal variants, the translation is
moved into the `ImportManager` during the compilation itself. This
avoids the need for providing the external name manually.

PR Close #27055
2018-11-21 09:20:11 -08:00
Kara Erickson
4e4bca6bbc Revert "fix(ivy): correct ngtsc path handling in Windows (#26703)"
This reverts commit d0037b22ef1e6879545bffdf013b5b32917821af. The commit must be temporarily reverted because
there were unforeseen breakages in g3.
2018-11-05 11:18:52 -08:00
JoostK
d0037b22ef fix(ivy): correct ngtsc path handling in Windows (#26703)
As it turns out, the usage of path.posix does not unify path handling
across operating systems. Instead, canonical-path is used to ensure
path handling is consistent, avoiding incorrect paths in Windows.

See https://github.com/angular/angular/pull/25862#discussion_r216157914

PR Close #26703
2018-11-05 09:56:20 -08:00
Pete Bacon Darwin
1918f8d5b5 feat(ivy): support separate .js and .d.ts trees when generating imports (#26403)
The `NgModule` handler generates `R3References` for its declarations, imports,
exports, and bootstrap components, based on the relative import path
between the module and the classes it's referring to. This works fine for
compilation of a .ts Program inside ngtsc, but in ngcc the import needed
in the .d.ts file may be very different to the import needed between .js
files (for example, if the .js files are flattened and the .d.ts is not).

This commit introduces a new API in the `ReflectionHost` for extracting the
.d.ts version of a declaration, and makes use of it in the
`NgModuleDecorationHandler` to write a correct expression for the `NgModule`
definition type.

PR Close #26403
2018-11-01 14:13:25 -07:00
Alex Rickabaugh
84e311038d feat(ivy): capture the identifier of a decorator during reflection (#26860)
Previously the ReflectionHost API only returned the names of decorators
and not a reference to their TypeScript Identifier. This commit adds
the identifier itself, so that a consumer can write references to the
decorator.

Testing strategy: this commit is trivial, and the functionality will be
exercised by downstream tests.

PR Close #26860
2018-10-31 19:52:36 -04:00
Igor Minar
4237c34c78 test(ivy): mark failing test targets with fixme-ivy-jit and fixme-ivy-local tags (#26471)
We are close enough to blacklist a few test targets, rather than whitelist targets to run...

Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.

This is the updated overview of ivy related bazel tags:

- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local

PR Close #26471
2018-10-23 08:57:42 -07:00
Greg Magolan
1f3331f5e6 build(bazel): use fine-grained npm deps (#26111) (#26488)
PR Close #26488
2018-10-19 20:59:29 -07:00
Pete Bacon Darwin
83302d193e fix(ivy): ensure ngcc compiles @angular/core with correct internal imports (#26236)
PR Close #26236
2018-10-08 13:45:46 -07:00
Pete Bacon Darwin
13cdd13511 fix(ivy): support late-initialized variables in ngcc/ngtsc (#26236)
In some formats variables are declared as `var` or `let` and only
assigned a value later in the code.

The ngtsc resolver still needs to be able to resolve this value,
so the host now provides a `host.getVariableValue(declaration)`
method that can do this resolution based on the format.

The hosts make some assumptions about the layout of the
code, so they may only work in the constrained scenarios that
ngcc expects.

PR Close #26236
2018-10-08 13:45:46 -07:00