Previously this would have just printed that `false` was not equal to
`true`, which, although true, is not very helpful. This commit adds
details about which special check failed together with the generated
code, for easier debugging.
PR Close#39863
This commit provides the machinery for the new file-based compliance test
approach for i18n tests, and migrates the i18n tests to this new format.
PR Close#39661
This commit implements partial compilation of components, together with
linking the partial declaration into its full AOT output.
This commit does not yet enable accurate source maps into external
templates. This requires additional work to account for escape sequences
which is non-trivial. Inline templates that were represented using a
string or template literal are transplated into the partial declaration
output, so their source maps should be accurate. Note, however, that
the accuracy of source maps is not currently verified in tests; this is
also left as future work.
The golden files of partial compilation output have been updated to
reflect the generated code for components. Please note that the current
output should not yet be considered stable.
PR Close#39707
In production mode this flag defaults to `true`, but the compliance
tests override this to `false` unless it is provided. As such, the
linker should also adhere to this default as otherwise the compilation
output would not align with the output of the full tests.
There are still tests that exercise the value of this flag, together
with it being `undefined` to verify the behavior of the actual default
value.
PR Close#39707
The linker does not currently support outputting ES5 syntax, so any
compliance tests that request ES5 output cannot be run in partial
compilation mode. This commit marks these tests as pending.
PR Close#39707
This commit adds the `i18nUseExternalIds` option to the linker options,
as the compliance tests exercise compilation results with and without
this flag enabled. We therefore need to configure the linker to take
this option into account, as otherwise the compliance test output would
not be identical.
Additionally, this commit switches away from spread syntax to set
the default options. This introduced a problem when the user-provided
options object did specify the keys, but with an undefined value. This
would have prevented the default options from being applied.
PR Close#39707
The metadata specification of queries allows for the boolean properties
`first`, `descendants` and `static` to be missing, but the linker did
not account for their omission.
This fix is tested in subsequent commits that implement compilation of
components, at which point this will be covered by the compliance tests.
PR Close#39707
The compilation result of components may have inserted template
functions into the constant pool, which would be inserted into the Babel
AST upon program exit. Babel will then proceed with visiting this newly
inserted subtree, but we have already cleaned up the linker instance
when exiting the program. Any call expressions within the template
functions would then fail to be processed, as a file linker would no
longer be available.
Since the inserted AST subtree is known not to contain yet more partial
declarations, it is safe to skip visiting call expressions when no
file linker is available.
PR Close#39707
The type checker had to do extensive work in resolving the
`NodePath.get` method call for the `NodePath` that had an intersection
type of `ts.VariableDeclarator&{init:t.Expression}`. The `NodePath.get`
method is typed using a conditional type which became expensive to
compute with this intersection type. As a workaround, the original
`init` property is explicitly omitted which avoids the performance
cliff. This brings down the compile time by 15s.
PR Close#39707
The JSON schema reference was off-by-one, preventing IDEs from finding
the file and offering suggestions and documentation. Additionally the
name of the golden file was slightly off.
PR Close#39707
If a template declares a reference to a missing target then referring to
that reference from elsewhere in the template would crash the template
type checker, due to a regression introduced in #38618. This commit
fixes the crash by ensuring that the invalid reference will resolve to
a variable of type any.
Fixes#39744
PR Close#39805
When the `preserveWhitespaces` is not true, the template parser will
process the parsed AST nodes to remove excess whitespace. Since the
generated `goog.getMsg()` statements rely upon the AST nodes after
this whitespace is removed, the i18n extraction must make a second pass.
Previously this resulted in innacurrate source-spans for the i18n text and
placeholder nodes that were extracted in the second pass.
This commit fixes this by reusing the source-spans from the first pass
when extracting the nodes in the second pass.
Fixes#39671
PR Close#39717
Consumers of the `TemplateTypeChecker` API could be interested in
mapping from a shim location back to the original source location in the
template. One concrete example of this use-case is for the "find
references" action in the Language Service. This will return locations
in the TypeScript shim file, and we will then need to be able to map the
result back to the template.
PR Close#39715
Both `ReferenceSymbol` and `VariableSymbol` have two locations of
interest to an external consumer.
1. The location for the initializers of the local TCB variables allow consumers
to query the TypeScript Language Service for information about the initialized type of the variable.
2. The location of the local variable itself (i.e. `_t1`) allows
consumers to query the TypeScript LS for references to that variable
from within the template.
PR Close#39715
The 15.x versions of `yargs` relied upon a version of `y18n` that
has a SNYK vulnerability.
This commit updates the overall project, and therefore also the
`localize` and `compiler-cli` packages to use the latest version
of `yargs` that does not depend upon the vulnerable `y18n`
version.
The AIO project was already on the latest `yargs` version and so
does not need upgrading.
Fixes#39743
PR Close#39749
Currently `readConfiguration` relies on the file system to perform disk
utilities needed to read determine a project configuration file and read
it. This poses a challenge for the language service, which would like to
use `readConfiguration` to watch and read configurations dependent on
extended tsconfigs (#39134). Challenges are at least twofold:
1. To test this, the langauge service would need to provide to the
compiler a mock file system.
2. The language service uses file system utilities primarily through
TypeScript's `Project` abstraction. In general this should correspond
to the underlying file system, but it may differ and it is better to
go through one channel when possible.
This patch alleviates the concern by directly providing to the compiler
a "ParseConfigurationHost" with read-only "file system"-like utilties.
For the language service, this host is derived from the project owned by
the language service.
For more discussion see
https://docs.google.com/document/d/1TrbT-m7bqyYZICmZYHjnJ7NG9Vzt5Rd967h43Qx8jw0/edit?usp=sharing
PR Close#39619
ngtsc's testing infrastructure uses a mock version of @angular/core, which
allows tests to run without requiring the real version of core to be built.
This commit adds a mock version of @angular/common as well, as the language
service tests are written to test against common.
Only a handful of directives/pipes from common are currently supported.
PR Close#39594
ngtsc has a robust suite of testing utilities, designed for in-memory
testing of a TypeScript compiler. Previously these utilities lived in the
`test` directory for the compiler-cli package.
This commit moves those utilities to an `ngtsc/testing` package, enabling
them to be depended on separately and opening the door for using them from
the upcoming language server testing infrastructure.
As part of this refactoring, the `fake_core` package (a lightweight API
replacement for @angular/core) is expanded to include functionality needed
for Language Service test use cases.
PR Close#39594
Currently when we encounter an implicit method call (e.g. `{{ foo(1) }}`) and we manage to resolve
its receiver to something within the template, we assume that the method is on the receiver itself
so we generate a type checking code to reflect it. This assumption is true in most cases, but it
breaks down if the call is on an implicit receiver and the receiver itself is being invoked. E.g.
```
<div *ngFor="let fn of functions">{{ fn(1) }}</div>
```
These changes resolve the issue by generating a regular function call if the method call's receiver
is pointing to `$implicit`.
Fixes#39634.
PR Close#39686
In order to more accurately map from a node in the TCB to a template position,
we need to provide more span information in the TCB. These changes are necessary
for the Language Service to map from a TCB node back to a specific
locations in the template for actions like "find references" and
"refactor/rename". After the TS "find references" returns results,
including those in the TCB, we need to map specifically to the matching
key/value spans in the template rather than the entire source span.
This also has the benefit of producing diagnostics which align more
closely with what TypeScript produces.
The following example shows TS code and the diagnostic produced by an invalid assignment to a property:
```
let a: {age: number} = {} as any;
a.age = 'laksjdf';
^^^^^ <-- Type 'string' is not assignable to type 'number'.
```
A corollary to this in a template file would be [age]="'someString'". The diagnostic we currently produce for this is:
```
Type 'number' is not assignable to type 'string'.
1 <app-hello [greeting]="1"></app-hello>
~~~~~~~~~~~~~~
```
Notice that the underlined text includes the entire span.
If we included the keySpan for the assignment to the property,
this diagnostic underline would be more similar to the one produced by TypeScript;
that is, it would only underline “greeting”.
[design/discussion doc]
(https://docs.google.com/document/d/1FtaHdVL805wKe4E6FxVTnVHl38lICoHIjS2nThtRJ6I/edit?usp=sharing)
PR Close#39665
ngtsc will avoid emitting generated imports that would create an import
cycle in the user's program. The main way such imports can arise is when
a component would ordinarily reference its dependencies in its component
definition `directiveDefs` and `pipeDefs`. This requires adding imports,
which run the risk of creating a cycle.
When ngtsc detects that adding such an import would cause this to occur, it
instead falls back on a strategy called "remote scoping", where a side-
effectful call to `setComponentScope` in the component's NgModule file is
used to patch `directiveDefs` and `pipeDefs` onto the component. Since the
NgModule file already imports all of the component's dependencies (to
declare them in the NgModule), this approach does not risk adding a cycle.
It has several large downsides, however:
1. it breaks under `sideEffects: false` logic in bundlers including the CLI
2. it breaks tree-shaking for the given component and its dependencies
See this doc for further details: https://hackmd.io/Odw80D0pR6yfsOjg_7XCJg?view
In particular, the impact on tree-shaking was exacerbated by the naive logic
ngtsc used to employ here. When this feature was implemented, at the time of
generating the side-effectful `setComponentScope` call, the compiler did not
know which of the component's declared dependencies were actually used in
its template. This meant that unlike the generation of `directiveDefs` in
the component definition itself, `setComponentScope` calls had to list the
_entire_ compilation scope of the component's NgModule, including directives
and pipes which were not actually used in the template. This made the tree-
shaking impact much worse, since if the component's NgModule made use of any
shared NgModules (e.g. `CommonModule`), every declaration therein would
become un-treeshakable.
Today, ngtsc does have the information on which directives/pipes are
actually used in the template, but this was not being used during the remote
scoping operation. This commit modifies remote scoping to take advantage of
the extra context and only list used dependencies in `setComponentScope`
calls, which should ameliorate the tree-shaking impact somewhat.
PR Close#39662
This commit adds bazel rules to test whether linking the golden partial
files for test cases produces the same output as a full compile of the
test case would.
PR Close#39617
This commit contains the basic runner logic and a couple of sample test cases
for the "full compile" compliance tests, where source files are compiled
to full definitions and checked against expectations.
PR Close#39617
This commit renames the original `compliance` test directory to `compliance_old`.
Eventually this directory will be deleted once all the tests have been
migrated to the new test case based compliance tests.
PR Close#39617
The resource loader uses TypeScript's module resolution system to
determine at which locations it needs to look for a resource file. A
marker string is used to force the module resolution to fail, such that
all failed lookup locations can then be considered for actual resource
resolution. Any filesystem requests targeting files/directories that
contain the marker are known not to exist, so no filesystem request
needs to be done at all.
PR Close#39604
The type alias allows for this pattern to be more easily used in other
areas of the compiler code. The current usages of this pattern have been
updated to use the type alias.
PR Close#39604
TCB generation occasionally transforms binding expressions twice, which can
result in a `BindingPipe` operation being `resolve()`'d multiple times. When
the pipe does not exist, this caused multiple OOB diagnostics to be recorded
about the missing pipe.
This commit fixes the problem by making the OOB recorder track which pipe
expressions have had diagnostics produced already, and only producing them
once per expression.
PR Close#39517
With this change we remove code which was used to support both TypeScript 3.9 and TypeScript 4.0
This code is now no longer needed because G3 is on TypeScript 4.0
PR Close#39586
There is a compiler transform that downlevels Angular class decorators
to static properties so that metadata is available for JIT compilation.
The transform was supposed to ignore non-Angular decorators but it was
actually completely dropping decorators that did not conform to a very
specific syntactic shape (i.e. the decorator was a simple identifier, or
a namespaced identifier).
This commit ensures that all non-Angular decorators are kepts as-is
even if they are built using a syntax that the Angular compiler does not
understand.
Fixes#39574
PR Close#39577
Rather than re-reading component metadata that was already interpreted
by the Ivy compiler, the Language Service should instead use the
compiler APIs to get information it needs about the metadata.
PR Close#39476
For consistency with other generated code, the partial declaration
functions are renamed to use the `ɵɵ` prefix which indicates that it is
generated API.
This commit also removes the declaration from the public API golden
file, as it's not yet considered stable at this point. Once the linker
is finalized will these declaration function be included into the golden
file.
PR Close#39518
This commit implements partial code generation for directives, which
will be transformed by the linker plugin to fully AOT compiled code in
follow-up work.
PR Close#39518