The previous default algorithm was `md5`, which is not compliant with FIPS.
The default is now set to `sha256`, which is compliant.
Fixes#42577
PR Close#42582
The hash algorithm for the entry-point manifest was hardcoded to `md5`.
This can now be configured by the `hashAlgorithm` property on the
ngcc.config.js project configuration.
PR Close#42582
The ngcc configuration gets hashed to be used when caching
but it was hardcoded to use the `md5` algorithm, which is
not FIPS compliant.
Now the hash algorithm can be configured in the ngcc.config.js
file at the project level.
PR Close#42582
Some tools (such as Language Server and ng-packagr) only care about
the processed typings generated by ngcc. Forcing these tools to process
the JavaScript files as well has two disadvantages:
First, unnecessary work is being done, which is time consuming.
But more importantly, it is not always possible to know how the final bundling
tools will want the processed JavaScript to be configured. For example,
the CLI would prefer the `--create-ivy-entry-points` option but this would
break non-CLI build tooling.
This commit adds a new option (`--typings-only` on the command line, and
`typingsOnly` via programmatic API) that instructs ngcc to only render changes
to the typings files for the entry-points that it finds, and not to write any
JavaScript files.
In order to process the typings, a JavaScript format will need to be analysed, but
it will not be rendered to disk. When using this option, it is best to offer ngcc a
wide range of possible JavaScript formats to choose from, and it will use the
first format that it finds. Ideally you would configure it to try the `ES2015` FESM
format first, since this will be the most performant.
Fixes#40969
PR Close#40976
Now that `ReadonlyFileSystem` and `PathManipulation` interfaces are
available, this commit updates the compiler-cli to use these more
focussed interfaces.
PR Close#40281
ngcc creates typically two `ts.Program` instances for each entry-point,
one for processing sources and another one for processing the typings.
The creation of these programs is somewhat expensive, as it concerns
module resolution and parsing of source files.
This commit implements several layers of caching to optimize the
creation of programs:
1. A shared module resolution cache across all entry-points within a
single invocation of ngcc. Both the sources and typings program
benefit from this cache.
2. Sharing the parsed `ts.SourceFile` for a single entry-point between
the sources and typings program.
3. Sharing parsed `ts.SourceFile`s of TypeScript's default libraries
across all entry-points within a single invocation. Some of these
default library typings are large and therefore expensive to parse,
so sharing the parsed source files across all entry-points offers
a significant performance improvement.
Using a bare CLI app created using `ng new` + `ng add @angular/material`,
the above changes offer a 3-4x improvement in ngcc's processing time
when running synchronously and ~2x improvement for asynchronous runs.
PR Close#38840
When ngcc creates an entry-point program, the `allowJs` option is enabled
in order to operate on the JavaScript source files of the entry-point.
A side-effect of this approach is that external modules that don't ship
declaration files will also have their JavaScript source files loaded
into the program, as the `allowJs` flag allows for them to be imported.
This may pose an issue in certain edge cases, where ngcc would inadvertently
operate on these external modules. This can introduce all sorts of undesirable
behavior and incompatibilities, e.g. the reflection host that is selected for
the entry-point's format could be incompatible with that of the external
module's JavaScript bundles.
To avoid these kinds of issues, module resolution that would resolve to
a JavaScript file located outside of the package will instead be rejected,
as if the file would not exist. This would have been the behavior when
`allowJs` is set to false, which is the case in typical Angular compilations.
Fixes#37508
PR Close#37596
The `Logger` interface and its related classes are general purpose
and could be used by other tooling. Moving it into ngtsc is a more
suitable place from which to share it - similar to the FileSystem stuff.
PR Close#37114
Previously, ngcc would only be able to match an ngcc configuration to
packages that were located inside the project's top-level
`node_modules/`. However, if there are multiple versions of a package in
a project (e.g. as a transitive dependency of other packages), multiple
copies of a package (at different versions) may exist in nested
`node_modules/` directories. For example, one at
`<project-root>/node_modules/some-package/` and one at
`<project-root>/node_modules/other-package/node_modules/some-package/`.
In such cases, ngcc was only able to detect the config for the first
copy but not for the second.
This commit fixes this by returning a new instance of
`ProcessedNgccPackageConfig` for each different package path (even if
they refer to the same package name). In these
`ProcessedNgccPackageConfig`, the `entryPoints` paths have been
processed to take the package path into account.
PR Close#37040
This commit adds a `packageName` property to the `EntryPoint` interface.
In a subsequent commit this will be used to retrieve the correct ngcc
configuration for each package, regardless of its path.
PR Close#37040
In order to retrieve the ngcc configuration (if any) for an entry-point,
ngcc has to detect the containing package's version.
Previously, ngcc would try to read the version from the entry-point's
`package.json` file, which was different than the package's top-level
`package.json` for secondary entry-points. For example, it would try to
read it from `node_modules/@angular/common/http/package.json` for
entry-point `@angular/common/http`. However, the `package.json` files
for secondary entry-points are not guaranteed to include a `version`
property.
This commit fixes this by first trying to read the version from the
_package's_ `package.json` (falling back to the entry-point's
`package.json`). For example, it will first try to read it from
`@angular/common/package.json` for entry-point `@angular/common/http`.
PR Close#37040
This commit refactors the way info is retrieved from entry-point
`package.json` files to make it easier to extract more info (such as the
package's name) in the future. It also avoids reading and parsing the
`package.json` file multiple times (as was happening before).
PR Close#37040
Rename the `package` property to `packagePath` on the `EntryPoint`
interface. This makes it more clear that the `packagePath` property
holds the absolute path to the containing package (similar to how `path`
holds the path to the entry-point). This will also align with the
`packageName` property that will be added in a subsequent commit.
This commit also re-orders the `EntryPoint` properties to group related
properties together and to match the order of properties on instances
with that on the interface.
PR Close#37040
Previously, when an entry-point was ignored via an ngcc config, ngcc
would scan sub-directories for sub-entry-points, but would not use the
correct `packagePath`. For example, if `@angular/common` was ignored, it
would look at `@angular/common/http` but incorrectly use
`.../@angular/common/http` as the `packagePath` (instead of
`.../@angular/common`). As a result, it would not retrieve the correct
ngcc config for the actual package.
This commit fixes it by ensuring the correct `packagePath` is used, even
if the primary entry-point corresponding to that path is ignored. In
order to do this, a new return value for `getEntryPointInfo()` is added:
`IGNORED_ENTRY_POINT`. This is used to differentiate between directories
that correspond to no or an incompatible entry-point and those that
correspond to an entry-point that could otherwise be valid but is
explicitly ignored. Consumers of `getEntryPointInfo()` can then use this
info to discard ignored entry-points, but still use the correct
`packagePath` when scanning their sub-directories for secondary
entry-points.
PR Close#37040
Adds @nocollapse to static properties added by ngcc
iff annotateForClosureCompiler is true.
The Closure Compiler will collapse static properties
into the global namespace. Adding this annotation keeps
the properties attached to their respective object, which
allows them to be referenced via a class's constructor.
The annotation is already added by ngtsc and ngc under the
same option, this commit extends the functionality to ngcc.
Closes#36618.
PR Close#36652
As of version 10, libraries following the APF will no longer contain
ESM5 output. Hence, tests in ngcc need to be updated as they currently
rely on the release output of `@angular/core`.
Additionally, we'd need to support in ngcc that the `module`
property of entry-points no longer necessarily refers to
`esm5` output, but instead can also target `esm2015`.
We currently achieve this by checking the path the `module`
property points to. We can do this because as per APF, the
folder name is known for the esm2015 output. Long-term for
more coverage, we want to sniff the format by looking for
known ES2015 constructs in the file `module` refers to.
PR Close#36944
In #36892 the `ModuleWithProviders` type parameter becomes required.
This exposes a bug in ngcc, where it can only handle functions that have a
specific form:
```
function forRoot() {
return { ... };
}
```
In other words, it only accepts functions that return an object literal.
In some libraries, the function instead returns a call to another function.
For example in `angular-in-memory-web-api`:
```
InMemoryWebApiModule.forFeature = function (dbCreator, options) {
return InMemoryWebApiModule_1.forRoot(dbCreator, options);
};
```
This commit changes the parsing of such functions to use the
`PartialEvaluator`, which can evaluate these more complex function
bodies.
PR Close#36948
Previously the `AsyncLocker` was configured to only wait
50x500ms before timing out. This is 25secs, which is often
less than a normal run of ngcc, so the chance of a timeout
flake was quite high.
The default is now 500x500ms, which is 250secs. If this is
too high for some projects then it can be changed via the
`ngcc.config.js` project file.
PR Close#36838
The commit adds support to the ngcc.config.js file for setting the
`retryAttempts` and `retryDelay` options for the `AsyncLocker`.
An integration test adds a new check for a timeout and actually uses the
ngcc.config.js to reduce the timeout time to prevent the test from taking
too long to complete.
PR Close#36838
Strictly this method only returns config for packages. So this commit
renames it to `getPackageConfig()`, which frees us up to add other
"getXxxxConfig()` methods later.
PR Close#36838
Now that `ngcc/src/ngcc_options` imports `FileWriter` type, there is a
circular dependency detected by the `ts-circular-deps:check` lint check:
```
ngcc/src/ngcc_options.ts
→ ngcc/src/writing/file_writer.ts
→ ngcc/src/packages/entry_point_bundle.ts
→ ngcc/src/ngcc_options.ts
```
This commit moves the `PathMappings` type (and related helpers) to a
separate file to avoid the circular dependency.
NOTE:
The circular dependency was only with taking types into account. There
was no circular dependency for the actual (JS) code.
PR Close#36626
The base path for package and entry-points is known so there is
no need to store these in the file. Also this commit avoids storing
empty arrays unnecessarily.
PR Close#36486
Previously, even if an entry-point did not need to be processed,
ngcc would always parse the files of the entry-point to compute
its dependencies. This can take a lot of time for large node_modules.
Now these dependencies are cached in the entry-point manifest,
and read from there rather than computing them every time.
See https://github.com/angular/angular/issues/36414\#issuecomment-608401834
FW-2047
PR Close#36486
Recently we added support for ignoring specified deep-import
warnings by providing sets of regular expressions within the
`ngcc.config.js` file. But this was only working for the project
level configuration.
This commit fixes ngcc so that it will also read these regular
expressions from package level configuration too.
Fixes#35750
PR Close#36423
The `browser` package.json property is now supported to the same
level as `main` - i.e. it is sniffed for UMD, ESM5 and CommonJS.
The `browser` property can also contain an object with file overrides
but this is not supported by ngcc.
Fixes#36062
PR Close#36396
Previously, `main` was only checked for `umd` or `commonjs`
formats. Now if there are `import` or `export` statements in the
source file it will be deemed to be in `esm5` format.
Fixes#35788
PR Close#36396
Ngcc supports providing a project-level configuration to affect how
certain dependencies are processed and also has a built-in fallback
configuration for some unmaintained packages. Each entry in these
configurations could be scoped to specific versions of a package by
providing a version range. If no version range is provided for a
package, it defaults to `*` (with the intention of matching any
version).
Previously, the installed version of a package was tested against the
version range using the [semver][1] package's `satisfies()` function
with the default options. By default, `satisfies()` does not match
pre-releases (see [here][2] for more details on reasoning). While this
makes sense when determining what version of a dependency to install
(trying to avoid unexpected breaking changes), it is not desired in the
case of ngcc.
This commit fixes it by explicitly specifying that pre-release versions
should be matched normally.
[1]: https://www.npmjs.com/package/semver
[2]: https://github.com/npm/node-semver#prerelease-tags
PR Close#36370
Previously ngcc never preserved whitespaces but this is at odds
with how the ViewEngine compiler works. In ViewEngine, library
templates are recompiled with the current application's tsconfig
settings, which meant that whitespace preservation could be set
in the application tsconfig file.
This commit allows ngcc to use the `preserveWhitespaces` setting
from tsconfig when compiling library templates. One should be aware
that this disallows different projects with different tsconfig settings
to share the same node_modules folder, with regard to whitespace
preservation. But this is already the case in the current ngcc since
this configuration is hard coded right now.
Fixes#35871
PR Close#36189
When ngcc is compiling an entry-point, it uses a `ReflectionHost` that
is specific to its format, e.g. ES2015, ES5, UMD or CommonJS. During the
compilation of that entry-point however, the reflector may be used to
reflect into external libraries using their declaration files.
Up until now this was achieved by letting all `ReflectionHost` classes
consider their parent class for reflector queries, thereby ending up in
the `TypeScriptReflectionHost` that is a common base class for all
reflector hosts. This approach has proven to be prone to bugs, as
failing to call into the base class would cause incompatibilities with
reading from declaration files.
The observation can be made that there's only two distinct kinds of
reflection host queries:
1. the reflector query is about code that is part of the entry-point
that is being compiled, or
2. the reflector query is for an external library that the entry-point
depends on, in which case the information is reflected
from the declaration files.
The `ReflectionHost` that was chosen for the entry-point should serve
only reflector queries for the first case, whereas a regular
`TypeScriptReflectionHost` should be used for the second case. This
avoids the problem where a format-specific `ReflectionHost` fails to
handle the second case correctly, as it isn't even considered for such
reflector queries.
This commit introduces a `ReflectionHost` that delegates to the
`TypeScriptReflectionHost` for AST nodes within declaration files,
otherwise delegating to the format-specific `ReflectionHost`.
Fixes#35078
Resolves FW-1859
PR Close#36089
In some scenarios it is useful for the developer to indicate
to ngcc that it should not use the entry-point manifest
file, and instead write a new one.
In the ngcc command line tool, this option is set by specfying
```
--invalidate-entry-point-manifest
```
PR Close#35931
The new `EntryPointManifest` class can read and write a
manifest file that contains all the paths to the entry-points
that have been found in a node_modules folder.
This can be used to speed up finding entry-points in
subsequent runs.
The manifest file stores the ngcc version and hashes of
the package lock-file and project config, since if these
change the manifest will need to be recomputed.
PR Close#35931
This reduces the time that `findEntryPoints` takes from 9701.143ms to 4177.278ms, by reducing the file operations done.
Reference: #35717
PR Close#35756
This commit adds a new ngcc configuration, `ignorableDeepImportMatchers`
for packages. This is a list of regular expressions matching deep imports
that can be safely ignored from that package. Deep imports that are not
ignored cause a warning to be logged.
// FW-1892
Fixes#35615
PR Close#35683
Now `hasBeenProcessed()` will no longer throw if there
is an entry-point that has been built with an outdated
version of ngcc.
Instead it just returns `false`, which will include it in this
processing run.
This is a precursor to adding functionality that will
automatically revert outdate build artifacts.
PR Close#35079
Consider a library that uses a shared constant for host bindings. e.g.
```ts
export const BASE_BINDINGS= {
'[class.mat-themed]': '_isThemed',
}
----
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir1 {}
@Directive({
host: {...BASE_BINDINGS, '(click)': '...'}
})
export class Dir2 {}
```
Previously when these components were shipped as part of the
library to NPM, consumers were able to consume `Dir1` and `Dir2`.
No errors showed up.
Now with Ivy, when ngcc tries to process the library, an error
will be thrown. The error is stating that the host bindings should
be an object (which they obviously are). This happens because
TypeScript transforms the object spread to individual
`Object.assign` calls (for compatibility).
The partial evaluator used by the `@Directive` annotation handler
is unable to process this expression because there is no
integrated support for `Object.assign`. In View Engine, this was
not a problem because the `metadata.json` files from the library
were used to compute the host bindings.
Fixes#34659
PR Close#34661
Ngcc adds properties to the `package.json` files of the entry-points it
processes to mark them as processed for a format and point to the
created Ivy entry-points (in case of `--create-ivy-entry-points`). When
running ngcc in parallel mode (which is the default for the standalone
ngcc command), multiple formats can be processed simultaneously for the
same entry-point and the order of completion is not deterministic.
Previously, ngcc would append new properties at the end of the target
object in `package.json` as soon as the format processing was completed.
As a result, the order of properties in the resulting `package.json`
(when processing multiple formats for an entry-point in parallel) was
not deterministic. For tools that use file hashes for caching purposes
(such as Bazel), this lead to a high probability of cache misses.
This commit fixes the problem by ensuring that the position of
properties added to `package.json` files is deterministic and
independent of the order in which each format is processed.
Jira issue: [FW-1801](https://angular-team.atlassian.net/browse/FW-1801)
Fixes#34635
PR Close#34870
Previously individual properties of the src bundle program were
passed to the reflection host constructors. But going forward,
more properties will be required. To prevent the signature getting
continually larger and more unwieldy, this change just passes the
whole src bundle to the constructor, allowing it to extract what it
needs.
PR Close#34254
Previously the `rootDir` was set to the entry-point path but
this is incorrect if the source files are stored in a directory outside
the entry-point path. This is the case in the latest versions of the
Angular CDK.
Instead the `rootDir` should be the containing package path, which is
guaranteed to include all the source for the entry-point.
---
A symptom of this is an error when ngcc is trying to process the source of
an entry-point format after the entry-point's typings have already been
processed by a previous processing run.
During processing the `_toR3Reference()` function gets called which in turn
makes a call to `ReflectionHost.getDtsDeclaration()`. If the typings files
are also being processed this returns the node from the dts typings files.
But if we have already processed the typings files and are now processing
only an entry-point format without typings, the call to
`ReflectionHost.getDtsDeclaration()` returns `null`.
When this value is `null`, a JS `valueRef` is passed through as the DTS
`typeRef` to the `ReferenceEmitter`. In this case, the `ReferenceEmitter`
fails during `emit()` because no `ReferenceEmitStrategy` is able to provide
an emission:
1) The `LocalIdentifierStrategy` is not able help because in this case
`ImportMode` is `ForceNewImport`.
2) The `LogicalProjectStrategy` cannot find the JS file below the `rootDir`.
The second strategy failure is fixed by this PR.
Fixes https://github.com/angular/ngcc-validation/issues/495
PR Close#34212
Placing this configuration in to the bundle avoids having to pass the
value around through lots of function calls, but also could enable
support for different behaviour per bundle in the future.
PR Close#34135
In a package.json file, the "typings" or "types" field could be an array
of typings files. ngcc would previously crash unexpectedly for such
packages, as it assumed that the typings field would be a string. This
commit lets ngcc skip over such packages, as having multiple typing
entry-points is not supported for Angular packages so it is safe to
ignore them.
Fixes#33646
PR Close#33973