Currently all of our migrations are set up to find the tsconfig paths within a project,
create a `Program` out of each and migrate the files inside of the `Program`. The
problem is that the `Program` can include files outside of the project and the CLI
APIs that we use to interact with the file system assume that all files are within
the project.
These changes consolidate the logic, that determines whether a file can be migrated,
in a single place and add an extra check to exclude files outside of the root.
Fixes#39778.
PR Close#39790
Add a schematic to update users to the new v11 `initialNavigation`
options for `RouterModule`. This replaces the deprecated/removed
`true`, `false`, `legacy_disabled`, and `legacy_enabled` options
with the newer `enabledBlocking` and `enabledNonBlocking` options.
PR Close#36926
In rare cases a project with configured `rootDirs` that has imports to
non-existent identifiers could fail in the migration.
This happens because based on the application code, the migration could
end up trying to resolve the `ts.Symbol` of such non-existent
identifiers. This isn't a problem usually, but due to a upstream bug
in the TypeScript compiler, a runtime error is thrown.
This is because TypeScript is unable to compute a relative path from the
originating source file to the imported source file which _should_
provide the non-existent identifier. An issue for this has been reported
upstream: https://github.com/microsoft/TypeScript/issues/37731. The
issue only surfaces since our migrations don't provide an absolute base
path that is used for resolving the root directories.
To fix this, we ensure that we never use relative paths when parsing
tsconfig files. More details can be found in the TS issue.
Fixes#36346.
PR Close#36367
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.
To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.
The new algorithm implemented by this commit is such:
1) Each incremental build starts with knowledge of the last known good
dependency graph and analysis results from the last successful build,
plus of course information about the set of files changed.
2) The previous dependency graph's information is used to determine the
set of source files which have "logically" changed. A source file is
considered logically changed if it or any of its dependencies have
physically changed (on disk) since the last successful compilation. Any
logically unchanged dependencies have their dependency information copied
over to the new dependency graph.
3) During the `TraitCompiler`'s loop to consider all source files in the
program, if a source file is logically unchanged then its previous
analyses are "adopted" (and their 'register' steps are run). If the file
is logically changed, then it is re-analyzed as usual.
4) Then, incremental build proceeds as before, with the new dependency graph
being used to determine the set of files which require re-emitting.
This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.
Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.
PR Close#34288
With the next version of the CLI we don't need to add logging for the description of the schematic as part of the schematic itself.
This is because now, the CLI will print the description defined in the `migrations.json` file.
See: https://github.com/angular/angular-cli/pull/15951
PR Close#33440
Static methods that return a type of ModuleWithProviders currently
do not have to specify a type because the generic falls back to any.
This is problematic because the type of the actual module being
returned is not present in the type information.
Since Ivy uses d.ts files exclusively for downstream packages
(rather than metadata.json files, for example), we no longer have
the type of the actual module being created.
For this reason, a generic type should be added for
ModuleWithProviders that specifies the module type. This will be
required for all users in v10, but will only be necessary for
users of Ivy in v9.
PR Close#33217