ngtsc has a robust suite of testing utilities, designed for in-memory
testing of a TypeScript compiler. Previously these utilities lived in the
`test` directory for the compiler-cli package.
This commit moves those utilities to an `ngtsc/testing` package, enabling
them to be depended on separately and opening the door for using them from
the upcoming language server testing infrastructure.
As part of this refactoring, the `fake_core` package (a lightweight API
replacement for @angular/core) is expanded to include functionality needed
for Language Service test use cases.
PR Close#39594
The `Logger` interface and its related classes are general purpose
and could be used by other tooling. Moving it into ngtsc is a more
suitable place from which to share it - similar to the FileSystem stuff.
PR Close#37114
This finder is designed to only process entry-points that are reachable
by the program defined by a tsconfig.json file.
It is triggered by calling `mainNgcc()` with the `findEntryPointsFromTsConfigProgram`
option set to true. It is ignored if a `targetEntryPointPath` has been
provided as well.
It is triggered from the command line by adding the `--use-program-dependencies`
option, which is also ignored if the `--target` option has been provided.
Using this option can speed up processing in cases where there is a large
number of dependencies installed but only a small proportion of the
entry-points are actually imported into the application.
PR Close#37075
As of version 10, libraries following the APF will no longer contain
ESM5 output. Hence, tests in ngcc need to be updated as they currently
rely on the release output of `@angular/core`.
Additionally, we'd need to support in ngcc that the `module`
property of entry-points no longer necessarily refers to
`esm5` output, but instead can also target `esm2015`.
We currently achieve this by checking the path the `module`
property points to. We can do this because as per APF, the
folder name is known for the esm2015 output. Long-term for
more coverage, we want to sniff the format by looking for
known ES2015 constructs in the file `module` refers to.
PR Close#36944
The library used by ngcc to update the source files (MagicString) is able
to generate a source-map but it is not able to account for any previous
source-map that the input text is already associated with.
There have been various attempts to fix this but none have been very
successful, since it is not a trivial problem to solve.
This commit contains a novel approach that is able to load up a tree of
source-files connected by source-maps and flatten them down into a single
source-map that maps directly from the final generated file to the original
sources referenced by the intermediate source-maps.
PR Close#35132
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34736
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34589
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.
This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.
Fixes#32665
PR Close#33514
In Angular View Engine, there are two kinds of decorator inheritance:
1) both the parent and child classes have decorators
This case is supported by InheritDefinitionFeature, which merges some fields
of the definitions (such as the inputs or queries).
2) only the parent class has a decorator
If the child class is missing a decorator, the compiler effectively behaves
as if the parent class' decorator is applied to the child class as well.
This is the "undecorated child" scenario, and this commit adds a migration
to ngcc to support this pattern in Ivy.
This migration has 2 phases. First, the NgModules of the application are
scanned for classes in 'declarations' which are missing decorators, but
whose base classes do have decorators. These classes are the undecorated
children. This scan is performed recursively, so even if a declared class
has a base class that itself inherits a decorator, this case is handled.
Next, a synthetic decorator (either @Component or @Directive) is created
on the child class. This decorator copies some critical information such
as 'selector' and 'exportAs', as well as supports any decorated fields
(@Input, etc). A flag is passed to the decorator compiler which causes a
special feature `CopyDefinitionFeature` to be included on the compiled
definition. This feature copies at runtime the remaining aspects of the
parent definition which `InheritDefinitionFeature` does not handle,
completing the "full" inheritance of the child class' decorator from its
parent class.
PR Close#33362
This commit adds a new `TaskQueue` implementation that supports
executing multiple tasks in parallel (while respecting interdependencies
between them).
This new implementation is currently not used, thus the behavior of
`ngcc` is not affected by this change. The parallel `TaskQueue` will be
used in a subsequent commit that will introduce parallel task execution.
PR Close#32427
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
Previously we were using an anonymous type `{specifier: string; qualifier: string;}`
throughout the code base. This commit gives this type a name and ensures it
is only defined in one place.
PR Close#25445
Now that we are using package.json properties to indicate which
entry-point format to compile, it turns out that we don't really
need to distinguish between flat and non-flat formats, unless we
are compiling `@angular/core`.
PR Close#29092