There is an encoding issue with using delta `Δ`, where the browser will attempt to detect the file encoding if the character set is not explicitly declared on a `<script/>` tag, and Chrome will find the `Δ` character and decide it is window-1252 encoding, which misinterprets the `Δ` character to be some other character that is not a valid JS identifier character
So back to the frog eyes we go.
```
__
/ɵɵ\
( -- ) - I am ineffable. I am forever.
_/ \_
/ \ / \
== == ==
```
PR Close#30546
In View engine it is possible to instantiate a service that that has no
`@Injectable` decorator as long as it satisfies one of:
1) It has no dependencies and so a constructor with no parameters.
This is already supported in Ivy.
2) It has no constructor of its own and sub-classes a service which has
dependencies but has its own `@Injectable` decorator. This second
scenario was broken in Ivy.
In Ivy, previous to this commit, if a class to be instantiated did not have
its own `@Injectable` decorator and did not provide a constructor of
its own, then it would be created using `new` with no arguments -
i.e. falling back to the first scenario.
After this commit Ivy correctly uses the `ngInjectableDef` inherited
from the super-class to provide the `factory` for instantiating the
sub-class.
FW-1314
PR Close#30388
Ivy uses R3Injector, but we are currently pulling in both the StaticInjector
(View Engine injector) and the R3Injector when running with Ivy. This commit
adds an ivy switch so calling Injector.create() pulls in the correct
implementation of the injector depending on whether you are using VE or Ivy.
This saves us about 3KB in the bundle.
PR Close#30219
The `Δ` caused issue with other infrastructure, and we are temporarily
changing it to `ɵɵ`.
This commit also patches ts_api_guardian_test and AIO to understand `ɵɵ`.
PR Close#29850
So far using runtime i18n with ivy meant that you needed to use Closure and `goog.getMsg` (or a polyfill). This PR changes the compiler to output both closure & non-closure code, while the unused option will be tree-shaken by minifiers.
This means that if you use the Angular CLI with ivy and load a translations file, you can use i18n and the application will not throw at runtime.
For now it will not translate your application, but at least you can try ivy without having to remove all of your i18n code and configuration.
PR Close#28689
Improve the stacktrace for `R3Injector` errors by adding the source component (or module) that tried to inject the missing provider, as well as the name of the injector which triggered the error (`R3Injector`).
e.g.:
```
R3InjectorError(SomeModule)[car -> SportsCar]:
NullInjectorError: No provider for SportsCar!
```
FW-807 #resolve
FW-875 #resolve
PR Close#28207
createInjector() is an Ivy-only API that should not have
been exported as part of the public API. This commit removes
the export. It will be re-exported when Ivy is released.
PR Close#28509
- Wraps the NgOnChangesFeature in a factory such that no side effects occur in the module root
- Adds comments to ngInherit property on feature definition interface to help guide others not to make the same mistake
- Updates compiler to generate the feature properly after the change to it being a factory
- Updates appropriate tests
PR Close#28187
This change is a prerequasity for a later change which will turn the
'di' into its own bazel package. In order to do that we have to:
- have `Injector` type be importable by Ivy. This means that we need
to create `Injector` as a pure type in `interface` folder which is
already a bazel package which Ivy can depend on.
- Remove the dependency of `class Injector` on Ivy so that it can be
compiled in isolation. We do that by using `-1` as special value for
`__NG_ELEMENT_ID__` which tells the Ivy `NodeInjector` than
`Injector` is being requested.
PR Close#28066
(FW-777)
When an Injector is provided, R3Injector instantiates it by calling its
constructor instead of its factory, not resolving dependencies.
With this fix, the ngInjectorDef is checked and the factory is correctly
used if it is found.
PR Close#27456
A recent commit (probably 2c7386c) has changed the import graph of the
DI types in core, and somehow results in the ngc compiler deciding to
re-export core DI types from application factories which tangentially
use inject(). This is not really surprising; ngc's import graph can be
very unstable.
However, this results in a re-export of InjectFlags surviving JS
compilation. InjectFlags was a const enum, akin to an interface in TS,
with no runtime repesentation. This causes a warning to be emitted by
Webpack when it sees the re-export of InjectFlags.
This commit avoids the issue by removing 'const' from the declaration
of InjectFlags, causing it to have a runtime value. This is a temporary
fix. The real fix will be for ngc to no longer write exports of const
enums.
Testing strategy: manually verified. Due to the problem only manifesting
when recompiling after a change and then running Webpack, there is no
existing framework via which this could be easily tested with an
integration test. Additionally, the potential for this issue is gone in
Ivy, so this solution is only temporarily needed.
Fixes#27251.
PR Close#27279
These tests were previously not running on CI so they have always been broken,
or got broken just recently :-(.
test(ivy): mark failing test targets with fixme-ivy-jit and fixme-ivy-local tags
PR Close#26735
We are close enough to blacklist a few test targets, rather than whitelist targets to run...
Because bazel rules can be composed of other rules that don't inherit tags automatically,
I had to explicitly mark all of our ts_library and ng_module targes with "ivy-local" and
"ivy-jit" tags so that we can create a query that excludes all fixme- tagged targets even
if those targets are composed of other targets that don't inherit this tag.
This is the updated overview of ivy related bazel tags:
- ivy-only: target that builds or runs only under ivy
- fixme-ivy-jit: target that doesn't yet build or run under ivy with --compile=jit
- fixme-ivy-local: target that doesn't yet build or run under ivy with --compile=local
- no-ivy-jit: target that is not intended to build or run under ivy with --compile=jit
- no-ivy-local: target that is not intended to build or run under ivy with --compile=local
PR Close#26471
Originally, the ivy_switch mechanism used Bazel genrules to conditionally
compile one TS file or another depending on whether ngc or ngtsc was the
selected compiler. This was done because we wanted to avoid importing
certain modules (and thus pulling them into the build) if Ivy was on or
off. This mechanism had a major drawback: ivy_switch became a bottleneck
in the import graph, as it both imports from many places in the codebase
and is imported by many modules in the codebase. This frequently resulted
in cyclic imports which caused issues both with TS and Closure compilation.
It turns out ngcc needs both code paths in the bundle to perform the switch
during its operation anyway, so import switching was later abandoned. This
means that there's no real reason why the ivy_switch mechanism needed to
operate at the Bazel level, and for the ivy_switch file to be a bottleneck.
This commit removes the Bazel-level ivy_switch mechanism, and introduces
an additional TypeScript transform in ngtsc (and the pass-through tsc
compiler used for testing JIT) to perform the same operation that ngcc
does, and flip the switch during ngtsc compilation. This allows the
ivy_switch file to be removed, and the individual switches to be located
directly next to their consumers in the codebase, greatly mitigating the
circular import issues and making the mechanism much easier to use.
As part of this commit, the tag for marking switched variables was changed
from __PRE_NGCC__ to __PRE_R3__, since it's no longer just ngcc which
flips these tags. Most variables were renamed from R3_* to SWITCH_* as well,
since they're referenced mostly in render2 code.
Test strategy: existing test coverage is more than sufficient - if this
didn't work correctly it would break the hello world and todo apps.
PR Close#26550
Create getter methods `getXXXDef` for each definition which
uses `hasOwnProperty` to verify that we don't accidently read form the
parent class.
Fixes: #24011Fixes: #25026
PR Close#25736
Provides a runtime and compile time switch for ivy including
`ApplicationRef.bootstrapModule`.
This is done by naming the symbols such that `ngcc` (angular
Compatibility compiler) can rename symbols in such a way that running
`ngcc` command will switch the `@angular/core` module from `legacy` to
`ivy` mode.
This is done as follows:
```
const someToken__PRE_NGCC__ = ‘legacy mode’;
const someToken__POST_NGCC__ = ‘ivy mode’;
export someSymbol = someToken__PRE_NGCC__;
```
The `ngcc` will search for any token which ends with `__PRE_NGCC__`
and replace it with `__POST_NGCC__`. This allows the `@angular/core`
package to be rewritten to ivy mode post `ngcc` execution.
PR Close#25238
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an opaque token.
For this reson why declare the return value of `defineInjectable` as `never`.
PR Close#23383
Ivy definition looks something like this:
```
class MyService {
static ngInjectableDef = defineInjectable({
…
});
}
```
Here the argument to `defineInjectable` is well known public contract which needs
to be honored in backward compatible way between versions. The type of the
return value of `defineInjectable` on the other hand is private and can change
shape drastically between versions without effecting backwards compatibility of
libraries publish to NPM. To our users it is effectively an `OpaqueToken`.
By prefixing the type with `ɵ` we are communicating the the outside world that
the value is not public API and is subject to change without backward compatibility.
PR Close#23371
This adds compilation of @NgModule providers and imports into
ngInjectorDef statements in generated code. All @NgModule annotations
will be compiled and the @NgModule decorators removed from the
resultant js output.
All @Injectables will also be compiled in Ivy mode, and the decorator
removed.
PR Close#22458