The static interpreter assumed that a foreign function expression would
have to be imported from the absolute module specifier that was used for
the foreign function itself. This assumption does not hold for the
`forwardRef` foreign function resolver, as that extracts the resolved
expression from the function's argument, which is not behind the
absolute module import of the `forwardRef` function.
The prior behavior has worked for the typical usage of `forwardRef`,
when it is contained within the same source file as where the static
evaluation started. In that case, the resulting reference would
incorrectly have an absolute module guess of `@angular/core`, but the
local identifier emit strategy was capable of emitting the reference
without generating an import using the absolute module guess.
In the scenario where the static interpreter would first have to follow
a reference to a different source that contained the `forwardRef` would
the compilation fail. In that case, there is no local identifier
available such that the absolute module emitter would try to locate the
imported symbol from `@angular/core`. which fails as the symbol is not
exported from there.
This commit fixes the issue by checking whether a foreign expression
occurs in the same source file as the call expression. If it does, then
the absolute module specifier that was used to resolve the call
expression is ignored.
Fixes#42865
PR Close#42887
For the compilation of a component, the compiler verifies that the
imports it needs to generate to reference the used directives and pipes
would not create an import cycle in the program. This requires visiting
the transitive import graphs of all directive/pipe usage in search of
the component file. The observation can be made that all directive/pipe
usages can leverage the exploration work in search of the component
file, thereby allowing sub-graphs of the import graph to be only visited
once instead of repeatedly per usage. Additionally, the transitive
imports of a file are no longer collected into a set to reduce memory
pressure.
PR Close#41271
In #41995 the type of `TrackByFunction` was changed such that the
declaration of a `trackBy` function did not cause the item type to be
widened to the `trackBy`'s item type, which may be a supertype of the
iterated type. This has introduced situations where the template type
checker is now reporting errors for cases where a `trackBy` function is
no longer assignable to `TrackByFunction`.
This commit fixes the error by also including the item type `T` in
addition to the constrained type parameter `U`, allowing TypeScript to
infer an appropriate `T`.
Fixes#42609
PR Close#42692
In combination with the TS `noImplicitOverride` compatibility changes,
we also want to follow the best-practice of adding `override` to
members which are implemented as part of abstract classes. This
commit fixes all instances which will be flagged as part of the
custom `no-implicit-override-abstract` TSLint rule.
PR Close#42512
Currently unless a listener inside of an embedded view tries to reference something from the parent view, or if the reference is a local ref, we don't generate the view restoration instructions and we allow for the value to be picked up from the context object in the function parameters. The problem is that the listener is only run during creation mode and the context object may have been swapped out afterwards.
These changes fix the issue by always generating the view restoration instructions for listeners inside templates.
Fixes#42698.
PR Close#42755
In #42492 the template type checker became capable of replicating a
wider range of generic type parameters for use in template type-check
files. Any literal types within a type parameter would however emit
invalid code, as TypeScript was emitting the literals using the text as
extracted from the template type-check file instead of the original
source file where the type node was taken from.
This commit works around the issue by cloning any literal types and
marking them as synthetic, signalling to TypeScript that the literal
text has to be extracted from the node itself instead from the source
file.
This commit also excludes `import()` type nodes from being supported,
as their module specifier may potentially need to be rewritten.
Fixes#42667
PR Close#42761
Updates the Bazel NodeJS rules to v4.0.0-beta.0. This is necessary
so that the Angular components repo can update, and it's generally
good to stay as up-to-date as possible with the Bazel rules as it's
easy to fall behind, and updating early allows us to discover issues
affecting our tooling earlier (where they are easier to address due to
e.g. potential breaking change policy).
PR Close#42760
Source files that contain directives or components that need an inline
type constructor or inline template type-check block would always be
considered as affected in incremental rebuilds. The inline operations
cause the source file to be updated in the TypeScript program that is
created for template type-checking, which becomes the reuse program
in a subsequent incremental rebuild.
In an incremental rebuild, the source files from the new user program
are compared to those from the reuse program. The updated source files
are not the same as the original source file from the user program, so
the incremental engine would mark the file which needed inline
operations as affected. This prevents incremental reuse for these files,
causing sub-optimal rebuild performance.
This commit attaches the original source file for source files that have
been updated with inline operations, such that the incremental engine
is able to compare source files using the original source file.
Fixes#42543
PR Close#42759
DTS bundling, will cause originally namespaced imports become namespace declarations within the same file. Example:
Before bundling
```ts
import * as i1 from './router';
export declare class RouterModule {
constructor(guard: any, router: Router);
static ɵmod: i0.ɵɵNgModuleDeclaration<RouterModule, [typeof i1.RouterOutlet...]>;
}
```
After bundling
```
declare namespace i1 {
export {
RouterOutletContract,
RouterOutlet
}
}
export declare class RouterModule {
constructor(guard: any, router: Router);
static ɵmod: i0.ɵɵNgModuleDeclaration<RouterModule, [typeof i1.RouterOutlet...]>;
}
```
And therefore this commit adds support for reflecting types that are defined in such namespace declarations.
Closes#42064
PR Close#42728
When the template type checker try to get a symbol of a template node, it will
not return the directives intended for an element on a microsyntax template,
for example, `<div *ngFor="let user of users;" dir>`, the `dir` will be skipped,
but it's needed in language service.
Fixes https://github.com/angular/vscode-ng-language-service/issues/1420
PR Close#42640
As of ES2021, JavaScript allows using underscores as separators inside numbers, in order to make them more readable (e.g. `1_000_000` vs `1000000`). TypeScript has had support for separators for a while so these changes expand the template parser to handle them as well.
PR Close#42672
The previous default algorithm was `md5`, which is not compliant with FIPS.
The default is now set to `sha256`, which is compliant.
Fixes#42577
PR Close#42582
The hash algorithm for the entry-point manifest was hardcoded to `md5`.
This can now be configured by the `hashAlgorithm` property on the
ngcc.config.js project configuration.
PR Close#42582
The ngcc configuration gets hashed to be used when caching
but it was hardcoded to use the `md5` algorithm, which is
not FIPS compliant.
Now the hash algorithm can be configured in the ngcc.config.js
file at the project level.
PR Close#42582
Adds support for shorthand property declarations inside Angular templates. E.g. doing `{foo, bar}` instead of `{foo: foo, bar: bar}`.
Fixes#10277.
PR Close#42421
Previously, the template type checker would only opt-in to inline type
constructors if it could import all type references from absolute module
specifiers. This limitation was put into place in an abundance of
caution as there was a safe, but less performant, fallback available.
The language service is not capable of using this fallback, which now
means that the limitation of absolute module specifiers limits the
language service's ability to use accurate types for component/directive
classes that have generic type parameters.
This commit loosens the restriction such that type references are now
eligible for emit as long as they are exported.
PR Close#42492
When a component/directive has a generic type parameter, the template
type checker attempts to translate the type parameter such that the
type parameters can be replicated in the type constructor that is
emitted into the typecheck file.
Type parameters with a default clause would incorrectly be emitted into
the typecheck file using the original `ts.TypeNode` for the default
clause, such that `ts.TypeReferenceNode`s within the default clause
would likely be invalid (i.e. referencing a type for which no import is
present in the typecheck file). This did not result in user-facing
type-check errors as errors reported in type constructors are not
translated into template positions Regardless, this commit ensures that
`ts.TypeReferenceNode`s within defaults are properly translated into the
typecheck file.
PR Close#42492
The template type checker is capable of recreating generic type bounds
in a different context, rewriting type references along the way (if
possible). This was previously done using a visitor that only supported
a limited set of types, resulting in the inability to emit all sorts of
types (even if they don't contain type references at all).
The inability to emit generic type bounds was not critical when the type
parameter emitting logic was introduced, as the compiler also has a
fallback strategy of creating inline type constructors. However, this
fallback is not available to the language service, resulting in
inaccurate types when components/directives use a complex generic type.
To mitigate this problem, the specialized visitor has been replaced with
a generalized TypeScript transform, where only type references get
special treatment. This allows for more complex types to be emitted,
such as union and intersection types, object literal types and tuple
types.
PR Close#42492
If an implcit receiver is accessed in a listener inside of an `ng-template`, we generate some extra code in order to ensure that we're assigning to the correct object. The problem is that the logic wasn't covering keyed writes which caused it to write to the wrong object and throw an assertion error at runtime.
These changes expand the logic to cover keyed writes.
Fixes#41267.
PR Close#42603
xi18n is the operation of extracting i18n messages from templates in the
compilation. Previously, only View Engine was able to perform xi18n. This
commit implements xi18n in the Ivy compiler, and a copy of the View Engine
test for Ivy verifies that the results are identical.
PR Close#42485
This commit moves some xi18n-related functions in the View Engine
ng.Program into a new file. This is necessary in order to depend on them
from the Ivy ng.Program while avoiding a cycle.
PR Close#42485
In watch builds, the compiler attempts to reuse as much information from
a prior compilation as possible. To accomplish this, it keeps a
reference to the most recently succeeded `TraitCompiler`, which contains
all analysis data for the program. However, `TraitCompiler` has an
internal reference to an `IncrementalBuild`, which is itself built on
top of its prior state. Consequently, all prior compilations continued
to be referenced, preventing garbage collection from cleaning up these
instances.
This commit changes the `AnalyzedIncrementalState` to no longer retain
a `TraitCompiler` instance, but only the analysis data it contains. This
breaks the retainer path to the prior incremental state, allowing it to
be garbage collected.
PR Close#42537
This is based on a discussion we had a few weeks ago. Currently if a component uses `ViewEncapsulation.ShadowDom` and its selector doesn't meet the requirements for a custom element tag name, a vague error will be thrown at runtime saying something like "Element does not support attachShadowRoot".
These changes add a new diagnostic to the compiler that validates the component selector and gives a better error message during compilation.
PR Close#42245
For quite a while it is an unspoken convention to add a trailing
new-line files within the Angular repository. This was never enforced
automatically, but has been frequently raised in pull requests through
manual review. This commit sets up a lint rule so that this is
"officially" enforced and doesn't require manual review.
PR Close#42478
Updates the compiler-cli compliance goldens. The golden updates are
required due to a regression in TypeScript 4.3 that causes the emitter
to not incorrectly preserve lines when emitting a node list.
This can be reverted once https://github.com/microsoft/TypeScript/pull/44070
is available.
PR Close#42022
Switches the repository to TypeScript 4.3 and the latest
version of tslib. This involves updating the peer dependency
ranges on `typescript` for the compiler CLI and for the Bazel
package. Tests for new TypeScript features have been added to
ensure compatibility with Angular's ngtsc compiler.
PR Close#42022
Currently we support safe property (`a?.b`) and method (`a?.b()`) accesses, but we don't handle safe keyed reads (`a?.[0]`) which is inconsistent. These changes expand the compiler in order to support safe key read expressions as well.
PR Close#41911
With the removal of the `ModuleWithProviders` transform in the parent commit,
the underlying dts transform can also be removed as it is not used elsewhere.
PR Close#41996
The `ModuleWithProviders` type has required a generic type since Angular 10,
so it is no longer necessary for the compiler to transform usages of the
`ModuleWithProviders` type without the generic type, as that should have
been reported as a compile error. This commit removes the detection logic
from ngtsc.
PR Close#41996
When a `trackBy` function is used that accepts a supertype of the iterated
array's type, the loop variable would undesirably be inferred as the supertype
instead of the array's item type. This commit adds an inferred type parameter
to `TrackByFunction` to allow an extra degree of freedom, enabling the
loop value to be inferred as the most narrow type.
Fixes#40125
PR Close#41995
The ngtsc test targets have fake declarations files for `@angular/core`
and `@angular/common` and the template type checking tests can leverage
the fake common declarations instead of declaring its own types.
PR Close#41995
Type-only imports are known to be elided by TypeScript, so the compiler
can be certain that such imports do not contribute to potential import
cycles. As such, type-only imports are no longer considered during cycle
analysis.
Regular import statements that would eventually be fully elided by
TypeScript during emit if none of the imported symbols are used in a
value position continue to be included in the cycle analysis, as the
cycle analyzer is unaware of these elision opportunities. Only explicit
`import type` statements are excluded.
PR Close#42453
The compiler flag `compileNonExportedClasses` allows the Angular compiler to
process classes which are not exported at the top level of a source file.
This is often used to allow for AOT compilation of test classes inside
`it()` test blocks, for example.
Previously, the compiler would identify exported classes by looking for an
`export` modifier on the class declaration itself. This works for the
trivial case, but fails for indirectly exported classes:
```typescript
// Component is declared unexported.
@Component({...})
class FooCmp {...}
// Indirect export of FooCmp
export {FooCmp};
```
This is not an immediate problem for most application builds, since the
default value for `compileNonExportedClasses` is `true` and therefore such
classes get compiled regardless.
However, in the Angular Language Service now, `compileNonExportedClasses` is
forcibly overridden to `false`. That's because the tsconfig used by the IDE
and Language Service is often far broader than the application build's
configuration, and pulls in test files that can contain unexported classes
not designed with AOT compilation in mind.
Therefore, the Language Service has trouble working with such structures.
In this commit, the `ReflectionHost` gains a new API for detecting whether a
class is exported. The implementation of this method now not only considers
the `export` modifier, but also scans the `ts.SourceFile` for indirect
exports like the example above. This ensures the above case will be
processed directly in the Language Service.
This new operation is cached using an expando symbol on the `ts.SourceFile`,
ensuring good performance even when scanning large source files with lots of
exports (e.g. a FESM file under `ngcc`).
Fixes#42184.
PR Close#42207
Update the supported range of node versions for to be less restrictive, no longer causing
yarn or npm to fail engine's checks for future versions of node.
While this change will no longer cause yarn or npm to fail these engine's check, this does
not reflect a change in the officially supported versions of node for Angular. Angular
continues to maintain support for Active LTS and Maintenance LTS versions of node.
PR Close#42205
Remove publishConfig property from the package.json entry for each of the entries in
the publish configuration. Using the wombat proxy is now ensured/managed by the
ng-dev release tooling.
PR Close#42104
Now that there is no need to work around the source-map bug in TypeScript
(https://github.com/Microsoft/TypeScript/issues/29300) we can just use
`resolvedTemplateUrl` for the source-map URL, rather than having a separate
property.
PR Close#42000
Indirect templates are templates produced by a non-literal expression value
of the `template` field in `@Component`. The compiler can statically
determine the template string, but there is not guaranteed to be a physical
file which contains the bytes of the template string. For example, the
template string may be computed by a concatenation expression: 'a' + 'b'.
Previously, the compiler would use the TS file path as the source map path
for indirect templates. This is incorrect, however, and breaks source
mapping for such templates, since the offsets within the template string do
not correspond to bytes of the TS file.
This commit returns the compiler to its old behavior for indirect templates,
which is to use `''` as the source map URL for such templates.
Fixes#40854
PR Close#41973
When `checkTypeOfPipes` is set to `false`, our TCB currently generates
the a statement like the following when pipes appear in the template:
`(_pipe1 as any).transform(args)`
This did enable us to get _some_ information from the Language Service
about pipes in this case because we still had access to the pipe
instance. However, because it is immediately cast to `any`, we cannot
get type information about the transform access. That means actions like "go to
definition", "find references", "quick info", etc. will return
incomplete information or fail altogether.
Instead, this commit changes the TCB to generate `(_pipe1.transform as any)(args)`.
This gives us the ability to get complete information for the LS
operations listed above.
PR Close#40523
This commit updates the logic in the LS renaming to handle renaming of
pipes, both from the name expression in the pipe metadata as well as
from the template.
The approach here is to introduce a new concept for renaming: an
"indirect" rename. In this type of rename, we find rename locations
in with the native TS Language Service using a different node than the
one we are renaming. Using pipes as an example, if we want to rename the
pipe name from the string literal expression, we use the transform
method to find rename locations rather than the string literal itself
(which will not return any results because it's just a string).
So the general approach is:
* Determine the details about the requested rename location, i.e. the
targeted template node and symbol for a template rename, or the TS
node for a rename outside a template.
* Using the details of the location, determine if the node is attempting
to rename something that is an indirect rename (pipes, selectors,
bindings). Other renames are considered "direct" and we use whatever
results the native TSLS returns for the rename locations.
* In the case of indirect renames, we throw out results that do not
appear in the templates (in this case, the shim files). These results will be
for the "indirect" rename that we don't want to touch, but are only
using to find template results.
* Create an additional rename result for the string literal expression
that is used for the input/output alias, the pipe name, or the
selector.
Note that renaming is moving towards being much more accurate in its
results than "find references". When the approach for renaming
stabilizes, we may want to then port the changes back to being shared
with the approach for retrieving references.
PR Close#40523