The compiler keeps track of how a declaration has been referenced
using absolute module imports and from which path the absolute module
should be resolved from. There was a bug in how the .d.ts metadata
extraction would incorrectly use the .d.ts file itself as resolution
context for symbols that had been imported using a relative module
specifier. This could result in module resolution failures.
For example, when extracting NgModule metadata from
`/node_modules/lib/index.d.ts` that looks like
```
import {LibDirective} from './dir';
@NgModule({
declarations: [LibDirective],
exports: [LibDirective],
})
export class LibModule {}
```
and `/app.module.ts` that contains
```
import {LibModule} from 'lib';
@NgModule({
imports: [LibModule],
})
export class AppModule {}
```
then `AppModule` would have recorded a reference to `LibModule` using
the `'lib'` module specifier. When extracting the NgModule metadata from
the `/node_modules/lib/index.d.ts` file the relative import into `./dir`
should also be assumed to be importable from `'lib'` (according to APF
where symbols need to be exported from a single entry-point)
so the reference to `LibDirective` should have `'lib'` as absolute
module specifier, but it would incorrectly have
`/node_modules/lib/index.d.ts` as resolution context path. The latter is
incorrect as `'lib'` needs to be resolved from `/app.module.ts` and not
from within the library itself.
Fixes#42810
PR Close#42879
For quite a while it is an unspoken convention to add a trailing
new-line files within the Angular repository. This was never enforced
automatically, but has been frequently raised in pull requests through
manual review. This commit sets up a lint rule so that this is
"officially" enforced and doesn't require manual review.
PR Close#42478
Switches the repository to TypeScript 4.3 and the latest
version of tslib. This involves updating the peer dependency
ranges on `typescript` for the compiler CLI and for the Bazel
package. Tests for new TypeScript features have been added to
ensure compatibility with Angular's ngtsc compiler.
PR Close#42022
This commit updates the logic in the LS renaming to handle renaming of
pipes, both from the name expression in the pipe metadata as well as
from the template.
The approach here is to introduce a new concept for renaming: an
"indirect" rename. In this type of rename, we find rename locations
in with the native TS Language Service using a different node than the
one we are renaming. Using pipes as an example, if we want to rename the
pipe name from the string literal expression, we use the transform
method to find rename locations rather than the string literal itself
(which will not return any results because it's just a string).
So the general approach is:
* Determine the details about the requested rename location, i.e. the
targeted template node and symbol for a template rename, or the TS
node for a rename outside a template.
* Using the details of the location, determine if the node is attempting
to rename something that is an indirect rename (pipes, selectors,
bindings). Other renames are considered "direct" and we use whatever
results the native TSLS returns for the rename locations.
* In the case of indirect renames, we throw out results that do not
appear in the templates (in this case, the shim files). These results will be
for the "indirect" rename that we don't want to touch, but are only
using to find template results.
* Create an additional rename result for the string literal expression
that is used for the input/output alias, the pipe name, or the
selector.
Note that renaming is moving towards being much more accurate in its
results than "find references". When the approach for renaming
stabilizes, we may want to then port the changes back to being shared
with the approach for retrieving references.
PR Close#40523
The compiler performs cycle analysis for the used directives and pipes
of a component's template to avoid introducing a cyclic import into the
generated output. The used directives and pipes are represented by their
output expression which would typically be an `ExternalExpr`; those are
responsible for the generation of an `import` statement. Cycle analysis
needs to determine the `ts.SourceFile` that would end up being imported
by these `ExternalExpr`s, as the `ts.SourceFile` is then checked against
the program's `ImportGraph` to determine if the import is allowed, i.e.
does not introduce a cycle. To accomplish this, the `ExternalExpr` was
dissected and ran through module resolution to obtain the imported
`ts.SourceFile`.
This module resolution step is relatively expensive, as it typically
needs to hit the filesystem. Even in the presence of a module resolution
cache would these module resolution requests generally see cache misses,
as the generated import originates from a file for which the cache has
not previously seen the imported module specifier.
This commit removes the need for the module resolution by wrapping the
generated `Expression` in an `EmittedReference` struct. This allows the
reference emitter mechanism that is responsible for generating the
`Expression` to also communicate from which `ts.SourceFile` the
generated `Expression` would be imported, precluding the need for module
resolution down the road.
PR Close#40948
In Angular programs, changing a file may require other files to be
emitted as well due to implicit NgModule dependencies. For example, if
the selector of a directive is changed then all components that have
that directive in their compilation scope need to be recompiled, as the
change of selector may affect the directive matching results.
Until now, the compiler solved this problem using a single dependency
graph. The implicit NgModule dependencies were represented in this
graph, such that a changed file would correctly also cause other files
to be re-emitted. This approach is limited in a few ways:
1. The file dependency graph is used to determine whether it is safe to
reuse the analysis data of an Angular decorated class. This analysis
data is invariant to unrelated changes to the NgModule scope, but
because the single dependency graph also tracked the implicit
NgModule dependencies the compiler had to consider analysis data as
stale far more often than necessary.
2. It is typical for a change to e.g. a directive to not affect its
public API—its selector, inputs, outputs, or exportAs clause—in which
case there is no need to re-emit all declarations in scope, as their
compilation output wouldn't have changed.
This commit implements a mechanism by which the compiler is able to
determine the impact of a change by comparing it to the prior
compilation. To achieve this, a new graph is maintained that tracks all
public API information of all Angular decorated symbols. During an
incremental compilation this information is compared to the information
that was captured in the most recently succeeded compilation. This
determines the exact impact of the changes to the public API, which
is then used to determine which files need to be re-emitted.
Note that the file dependency graph remains, as it is still used to
track the dependencies of analysis data. This graph does no longer track
the implicit NgModule dependencies, which allows for better reuse of
analysis data.
These changes also fix a bug where template type-checking would fail to
incorporate changes made to a transitive base class of a
directive/component. This used to be a problem because transitive base
classes were not recorded as a transitive dependency in the file
dependency graph, such that prior type-check blocks would erroneously
be reused.
This commit also fixes an incorrectness where a change to a declaration
in NgModule `A` would not cause the declarations in NgModules that
import from NgModule `A` to be re-emitted. This was intentionally
incorrect as otherwise the performance of incremental rebuilds would
have been far worse. This is no longer a concern, as the compiler is now
able to only re-emit when actually necessary.
Fixes#34867Fixes#40635Closes#40728
PR Close#40947
1. The error function throws, so no code after it is reachable.
2. Some switch statements are exhaustive, so no code after them are reachable.
PR Close#40984
This commit introduces an `isStructural` flag on directive metadata, which
is `true` if the directive injects `TemplateRef` (and thus is at least
theoretically usable as a structural directive). The flag is not used for
anything currently, but will be utilized by the Language Service to offer
better autocompletion results for structural directives.
PR Close#40032
The `annotations` package in the compiler previously contained a registry
which tracks NgModule scopes for template type-checking, including unifying
all type-checking metadata across class inheritance lines.
This commit generalizes this utility and prepares it for use in the
`TemplateTypeChecker` as well, to back APIs used by the language service.
PR Close#40032
To avoid overwhelming a user with secondary diagnostics that derive from a
"root cause" error, the compiler has the notion of a "poisoned" NgModule.
An NgModule becomes poisoned when its declaration contains semantic errors:
declarations which are not components or pipes, imports which are not other
NgModules, etc. An NgModule also becomes poisoned if it imports or exports
another poisoned NgModule.
Previously, the compiler tracked this poisoned status as an alternate state
for each scope. Either a correct scope could be produced, or the entire
scope would be set to a sentinel error value. This meant that the compiler
would not track any information about a scope that was determined to be in
error.
This method presents several issues:
1. The compiler is unable to support the language service and return results
when a component or its module scope is poisoned.
This is fine for compilation, since diagnostics will be produced showing the
error(s), but the language service needs to still work for incorrect code.
2. `getComponentScopes()` does not return components with a poisoned scope,
which interferes with resource tracking of incremental builds.
If the component isn't included in that list, then the NgModule for it will
not have its dependencies properly tracked, and this can cause future
incremental build steps to produce incorrect results.
This commit changes the tracking of poisoned module scopes to use a flag on
the scope itself, rather than a sentinel value that replaces the scope. This
means that the scope itself will still be tracked, even if it contains
semantic errors. A test is added to the language service which verifies that
poisoned scopes can still be used in template type-checking.
PR Close#39923
ngtsc will avoid emitting generated imports that would create an import
cycle in the user's program. The main way such imports can arise is when
a component would ordinarily reference its dependencies in its component
definition `directiveDefs` and `pipeDefs`. This requires adding imports,
which run the risk of creating a cycle.
When ngtsc detects that adding such an import would cause this to occur, it
instead falls back on a strategy called "remote scoping", where a side-
effectful call to `setComponentScope` in the component's NgModule file is
used to patch `directiveDefs` and `pipeDefs` onto the component. Since the
NgModule file already imports all of the component's dependencies (to
declare them in the NgModule), this approach does not risk adding a cycle.
It has several large downsides, however:
1. it breaks under `sideEffects: false` logic in bundlers including the CLI
2. it breaks tree-shaking for the given component and its dependencies
See this doc for further details: https://hackmd.io/Odw80D0pR6yfsOjg_7XCJg?view
In particular, the impact on tree-shaking was exacerbated by the naive logic
ngtsc used to employ here. When this feature was implemented, at the time of
generating the side-effectful `setComponentScope` call, the compiler did not
know which of the component's declared dependencies were actually used in
its template. This meant that unlike the generation of `directiveDefs` in
the component definition itself, `setComponentScope` calls had to list the
_entire_ compilation scope of the component's NgModule, including directives
and pipes which were not actually used in the template. This made the tree-
shaking impact much worse, since if the component's NgModule made use of any
shared NgModules (e.g. `CommonModule`), every declaration therein would
become un-treeshakable.
Today, ngtsc does have the information on which directives/pipes are
actually used in the template, but this was not being used during the remote
scoping operation. This commit modifies remote scoping to take advantage of
the extra context and only list used dependencies in `setComponentScope`
calls, which should ameliorate the tree-shaking impact somewhat.
PR Close#39662
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.
It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.
So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.
To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.
PR Close#38959
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.
This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.
PR Close#38539
When type-checking a component, the declaring NgModule scope is used
to create a directive matcher that contains flattened directive metadata,
i.e. the metadata of a directive and its base classes. This computation
is done for all components, whereas the type-check scope is constant per
NgModule. Additionally, the flattening of metadata is constant per
directive instance so doesn't necessarily have to be recomputed for
each component.
This commit introduces a `TypeCheckScopes` class that is responsible
for flattening directives and computing the scope per NgModule. It
caches the computed results as appropriate to avoid repeated computation.
PR Close#38539
The `R3TargetBinder` accepts an interface for directive metadata which
declares types for `input` and `output` objects. These types convey the
mapping between the property names for an input or output and the
corresponding property name on the component class. Due to
`R3TargetBinder`'s requirements, this mapping was specified with property
names as keys and field names as values.
However, because of duck typing, this interface was accidentally satisifed
by the opposite mapping, of field names to property names, that was produced
in other parts of the compiler. This form more naturally represents the data
model for inputs.
Rather than accept the field -> property mapping and invert it, this commit
introduces a new abstraction for such mappings which is bidirectional,
eliminating the ambiguous plain object type. This mapping uses new,
unambiguous terminology ("class property name" and "binding property name")
and can be used to satisfy both the needs of the binder as well as those of
the template type-checker (field -> property).
A new test ensures that the input/output metadata produced by the compiler
during analysis is directly compatible with the binder via this unambiguous
new interface.
PR Close#38685
The compiler does not currently report errors when there's an `@Input()`
for a `private`, `protected`, or `readonly` directive/component class member.
This change adds an option to enable reporting errors when a template
attempts to bind to one of these restricted input fields.
PR Close#38249
Prior to this change, the template type checker would always use a
type-constructor to instantiate a directive. This type-constructor call
serves two purposes:
1. Infer any generic types for the directive instance from the inputs
that are passed in.
2. Type check the inputs that are passed into the directive's inputs.
The first purpose is only relevant when the directive actually has any
generic types and using a type-constructor for these cases inhibits
a type-check performance penalty, as a type-constructor's signature is
quite complex and needs to be generated for each directive.
This commit refactors the generated type-check blocks to only generate
a type-constructor call for directives that have generic types. Type
checking of inputs is achieved by generating individual statements for
all inputs, using assignments into the directive's fields.
Even if a type-constructor is used for type-inference of generic types
will the input checking also be achieved using the individual assignment
statements. This is done to support the rework of the language service,
which will start to extract symbol information from the type-check
blocks.
As a future optimization, it may be possible to reduce the number of
inputs passed into a type-constructor to only those inputs that
contribute the the type-inference of the generics. As this is not a
necessity at the moment this is left as follow-up work.
Closes#38185
PR Close#38249
This commit significantly refactors the 'typecheck' package to introduce a
new abstraction, the `TemplateTypeChecker`. To achieve this:
* a 'typecheck:api' package is introduced, containing common interfaces that
consumers of the template type-checking infrastructure can depend on
without incurring a dependency on the template type-checking machinery as
a whole.
* interfaces for `TemplateTypeChecker` and `TypeCheckContext` are introduced
which contain the abstract operations supported by the implementation
classes `TemplateTypeCheckerImpl` and `TypeCheckContextImpl` respectively.
* the `TemplateTypeChecker` interface supports diagnostics on a whole
program basis to start with, but the implementation is purposefully
designed to support incremental diagnostics at a per-file or per-component
level.
* `TemplateTypeChecker` supports direct access to the type check block of a
component.
* the testing utility is refactored to be a lot more useful, and new tests
are added for the new abstraction.
PR Close#38105
Previously, an anonymous type was used for creating a diagnostic with related
information. The anonymous type would then be translated into the necessary
`ts.DiagnosticRelatedInformation` shape within `makeDiagnostic`. This commit
switches the `makeDiagnostic` signature over to taking `ts.DiagnosticRelatedInformation`
directly and introduces `makeRelatedInformation` to easily create such objects.
This is done to aid in making upcoming work more readable.
PR Close#37587
The compiler needs to track the dependencies of a component, including any
NgModules which happen to be present in a component's scope. If an upstream
NgModule changes, any downstream components need to have their templates
re-compiled and re-typechecked.
Previously, the compiler handled this well for the A -> B -> C case where
module A imports module B which re-exports module C. However, it fell apart
in the A -> B -> C -> D case, because previously tracking focused on changes
to components/directives in the scope, and not NgModules specifically.
This commit introduces logic to track which NgModules contributed to a given
scope, and treat them as dependencies of any components within.
This logic also contains a bug, which is intentional for now. It
purposefully does not track transitive dependencies of the NgModules which
contribute to a scope. If it did, using the current dependency system, this
would treat all components and directives (even those not exported into the
scope) as dependencies, causing a major performance bottleneck. Only those
dependencies which contributed to the module's export scope should be
considered, but the current system is incapable of making this distinction.
This will be fixed at a later date.
PR Close#36211
Prior to this commit, while calculating the scope for a module, Ivy compiler processed `declarations` field first and `imports` after that. That results in a couple issues:
* for Pipes with the same `name` and present in `declarations` and in an imported module, Pipe from imported module was selected. In View Engine the logic is opposite: Pipes from `declarations` field receive higher priority.
* for Directives with the same selector and present in `declarations` and in an imported module, we first invoked the logic of a Directive from `declarations` field and after that - imported Directive logic. In View Engine, it was the opposite and the logic of a Directive from the `declarations` field was invoked last.
In order to align Ivy and View Engine behavior, this commit updates the logic in which we populate module scope: we first process all imports and after that handle `declarations` field. As a result, in Ivy both use-cases listed above work similar to View Engine.
Resolves#35502.
PR Close#35850
NG6002/NG6003 are errors produced when an NgModule being compiled has an
imported or exported type which does not have the proper metadata (that is,
it doesn't appear to be an @NgModule, or @Directive, etc. depending on
context).
Previously this error message was a bit sparse. However, Github issues show
that this is the most common error users receive when for whatever reason
ngcc wasn't able to handle one of their libraries, or they just didn't run
it. So this commit changes the error message to offer a bit more useful
context, instructing users differently depending on whether the class in
question is from their own project, from NPM, or from a monorepo-style local
dependency.
PR Close#35620
Previously, NgtscProgram lived in the main @angular/compiler-cli package
alongside the legacy View Engine compiler. As a result, the main package
depended on all of the ngtsc internal packages, and a significant portion of
ngtsc logic lived in NgtscProgram.
This commit refactors NgtscProgram and moves the main logic of compilation
into a new 'core' package. The new package defines a new API which enables
implementers of TypeScript compilers (compilers built using the TS API) to
support Angular transpilation as well. It involves a new NgCompiler type
which takes a ts.Program and performs Angular analysis and transformations,
as well as an NgCompilerHost which wraps an input ts.CompilerHost and adds
any extra Angular files.
Together, these two classes are used to implement a new NgtscProgram which
adapts the legacy api.Program interface used by the View Engine compiler
onto operations on the new types. The new NgtscProgram implementation is
significantly smaller and easier to reason about.
The new NgCompilerHost replaces the previous GeneratedShimsHostWrapper which
lived in the 'shims' package.
A new 'resource' package is added to support the HostResourceLoader which
previously lived in the outer compiler package.
As a result of the refactoring, the dependencies of the outer
@angular/compiler-cli package on ngtsc internal packages are significantly
trimmed.
This refactoring was driven by the desire to build a plugin interface to the
compiler so that tsc_wrapped (another consumer of the TS compiler APIs) can
perform Angular transpilation on user request.
PR Close#34887
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34736
The major one that affects the angular repo is the removal of the bootstrap attribute in nodejs_binary, nodejs_test and jasmine_node_test in favor of using templated_args --node_options=--require=/path/to/script. The side-effect of this is that the bootstrap script does not get the require.resolve patches with explicitly loading the targets _loader.js file.
PR Close#34589
Previously, ngtsc would perform scope analysis (which directives/pipes are
available inside a component's template) and template type-checking of that
template as separate steps. If a component's scope was somehow invalid (e.g.
its NgModule imported something which wasn't another NgModule), the
component was treated as not having a scope. This meant that during template
type-checking, errors would be produced for any invalid expressions/usage of
other components that should have been in the scope.
This commit changes ngtsc to skip template type-checking of a component if
its scope is erroneous (as opposed to not present in the first place). Thus,
users aren't overwhelmed with diagnostic errors for the template and are
only informed of the root cause of the problem: an invalid NgModule scope.
Fixes#33849
PR Close#34460
Previously each NgModule trait checked its own scope for valid declarations
during 'resolve'. This worked, but caused the LocalModuleScopeRegistry to
declare that NgModule scopes were valid even if they contained invalid
declarations.
This commit moves the generation of diagnostic errors to the
LocalModuleScopeRegistry where it belongs. Now the registry can consider an
NgModule's scope to be invalid if it contains invalid declarations.
PR Close#34460
This commit adds three previously missing validations to
NgModule.declarations:
1. It checks that declared classes are actually within the current
compilation.
2. It checks that declared classes are directives, components, or pipes.
3. It checks that classes are declared in at most one NgModule.
PR Close#34404
The export scope of NgModules from external compilations units, as
present in .d.ts declarations, does not change during a compilation so
can be easily shared. There was already a cache but the computed export
scope was not actually stored there. This commit fixes that.
PR Close#34332
Previously, the ngtsc compiler attempted to reuse analysis work from the
previous program during an incremental build. To do this, it had to prove
that the work was safe to reuse - that no changes made to the new program
would invalidate the previous analysis.
The implementation of this had a significant design flaw: if the previous
program had errors, the previous analysis would be missing significant
information, and the dependency graph extracted from it would not be
sufficient to determine which files should be re-analyzed to fill in the
gaps. This often meant that the build output after an error was resolved
would be wholly incorrect.
This commit switches ngtsc to take a simpler approach to incremental
rebuilds. Instead of attempting to reuse prior analysis work, the entire
program is re-analyzed with each compilation. This is actually not as
expensive as one might imagine - analysis is a fairly small part of overall
compilation time.
Based on the dependency graph extracted during this analysis, the compiler
then can make accurate decisions on whether to emit specific files. A new
suite of tests is added to validate behavior in the presence of source code
level errors.
This new approach is dramatically simpler than the previous algorithm, and
should always produce correct results for a semantically correct program.s
Fixes#32388Fixes#32214
PR Close#33862
Recently it was made possible to have a directive without selector,
which are referred to as abstract directives. Such directives should not
be registered in an NgModule, but can still contain decorators for
inputs, outputs, queries, etc. The information from these decorators and
the `@Directive()` decorator itself needs to be registered with the
central `MetadataRegistry` so that other areas of the compiler can
request information about a given directive, an example of which is the
template type checker that needs to know about the inputs and outputs of
directives.
Prior to this change, however, abstract directives would only register
themselves with the `MetadataRegistry` as being an abstract directive,
without all of its other metadata like inputs and outputs. This meant
that the template type checker was unable to resolve the inputs and
outputs of these abstract directives, therefore failing to check them
correctly. The typical error would be that some property does not exist
on a DOM element, whereas said property should have been bound to the
abstract directive's input.
This commit fixes the problem by always registering the metadata of a
directive or component with the `MetadataRegistry`. Tests have been
added to ensure abstract directives are handled correctly in the
template type checker, together with tests to verify the form of
abstract directives in declaration files.
Fixes#30080
PR Close#33131
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.
For example, you could imagine an input of the form:
```typescript
@Input() get value(): string {
return this._value;
}
set value(v: {toString(): string}) {
this._value = v.toString();
}
```
Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.
Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.
To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static field with the name ngAcceptInputType_value. If such a field is found
the type-checking expression for the input will use the static field's type
instead of the type for the @Input field,allowing for the expression of a
type conversion between the binding expression and the value being written
to the input's field.
To solve the case above, for example, MatInput might write:
```typescript
class MatInput {
// rest of the directive...
static ngAcceptInputType_value: {toString(): string};
}
```
FW-1475 #resolve
PR Close#33243
This commit refactors the aliasing system to support multiple different
AliasingHost implementations, which control specific aliasing behavior
in ngtsc (see the README.md).
A new host is introduced, the `PrivateExportAliasingHost`. This solves a
longstanding problem in ngtsc regarding support for "monorepo" style private
libraries. These are libraries which are compiled separately from the main
application, and depended upon through TypeScript path mappings. Such
libraries are frequently not in the Angular Package Format and do not have
entrypoints, but rather make use of deep import style module specifiers.
This can cause issues with ngtsc's ability to import a directive given the
module specifier of its NgModule.
For example, if the application uses a directive `Foo` from such a library
`foo`, the user might write:
```typescript
import {FooModule} from 'foo/module';
```
In this case, foo/module.d.ts is path-mapped into the program. Ordinarily
the compiler would see this as an absolute module specifier, and assume that
the `Foo` directive can be imported from the same specifier. For such non-
APF libraries, this assumption fails. Really `Foo` should be imported from
the file which declares it, but there are two problems with this:
1. The compiler would have to reverse the path mapping in order to determine
a path-mapped path to the file (maybe foo/dir.d.ts).
2. There is no guarantee that the file containing the directive is path-
mapped in the program at all.
The compiler would effectively have to "guess" 'foo/dir' as a module
specifier, which may or may not be accurate depending on how the library and
path mapping are set up.
It's strongly desirable that the compiler not break its current invariant
that the module specifier given by the user for the NgModule is always the
module specifier from which directives/pipes are imported. Thus, for any
given NgModule from a particular module specifier, it must always be
possible to import any directives/pipes from the same specifier, no matter
how it's packaged.
To make this possible, when compiling a file containing an NgModule, ngtsc
will automatically add re-exports for any directives/pipes not yet exported
by the user, with a name of the form: ɵngExportɵModuleNameɵDirectiveName
This has several effects:
1. It guarantees anyone depending on the NgModule will be able to import its
directives/pipes from the same specifier.
2. It maintains a stable name for the exported symbol that is safe to depend
on from code on NPM. Effectively, this private exported name will be a
part of the package's .d.ts API, and cannot be changed in a non-breaking
fashion.
Fixes#29361
FW-1610 #resolve
PR Close#33177
Often the types of an `@Input`'s field don't fully reflect the types of
assignable values. This can happen when an input has a getter/setter pair
where the getter always returns a narrow type, and the setter coerces a
wider value down to the narrow type.
For example, you could imagine an input of the form:
```typescript
@Input() get value(): string {
return this._value;
}
set value(v: {toString(): string}) {
this._value = v.toString();
}
```
Here, the getter always returns a `string`, but the setter accepts any value
that can be `toString()`'d, and coerces it to a string.
Unfortunately TypeScript does not actually support this syntax, and so
Angular users are forced to type their setters as narrowly as the getters,
even though at runtime the coercion works just fine.
To support these kinds of patterns (e.g. as used by Material), this commit
adds a compiler feature called "input coercion". When a binding is made to
the 'value' input of a directive like MatInput, the compiler will look for a
static function with the name ngCoerceInput_value. If such a function is
found, the type-checking expression for the input will be wrapped in a call
to the function, allowing for the expression of a type conversion between
the binding expression and the value being written to the input's field.
To solve the case above, for example, MatInput might write:
```typescript
class MatInput {
// rest of the directive...
static ngCoerceInput_value(value: {toString(): string}): string {
return null!;
}
}
```
FW-1475 #resolve
PR Close#33243
Module defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngModuleDef to mod. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
PR Close#33142
Directive defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
ngDirectiveDef to dir. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngFactoryDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33110
Component defs are not considered public API, so the property
that contains them should be prefixed with Angular's marker
for "private" ('ɵ') to discourage apps from relying on def
APIs directly.
This commit adds the prefix and shortens the name from
`ngComponentDef` to `cmp`. This is because property names
cannot be minified by Uglify without turning on property
mangling (which most apps have turned off) and are thus
size-sensitive.
Note that the other "defs" (ngDirectiveDef, etc) will be
prefixed and shortened in follow-up PRs, in an attempt to
limit how large and conflict-y this change is.
PR Close#33088
Previously, ngtsc attempted to use the .d.ts schema for HTML elements to
check bindings to DOM properties. However, the TypeScript lib.dom.d.ts
schema does not perfectly align with the Angular DomElementSchemaRegistry,
and these inconsistencies would cause issues in apps. There is also the
concern of supporting both CUSTOM_ELEMENTS_SCHEMA and NO_ERRORS_SCHEMA which
would have been very difficult to do in the existing system.
With this commit, the DomElementSchemaRegistry is employed in ngtsc to check
bindings to the DOM. Previous work on producing template diagnostics is used
to support generation of this different kind of error with the same high
quality of error message.
PR Close#32171
Previously if only a component template changed then we would know to
rebuild its component source file. But the compilation was incorrect if the
component was part of an NgModule, since we were not capturing the
compilation scope information that had a been acquired from the NgModule
and was not being regenerated since we were not needing to recompile
the NgModule.
Now we register compilation scope information for each component, via the
`ComponentScopeRegistry` interface, so that it is available for incremental
compilation.
The `ComponentDecoratorHandler` now reads the compilation scope from a
`ComponentScopeReader` interface which is implemented as a compound
reader composed of the original `LocalModuleScopeRegistry` and the
`IncrementalState`.
Fixes#31654
PR Close#31932
To improve cross platform support, all file access (and path manipulation)
is now done through a well known interface (`FileSystem`).
For testing a number of `MockFileSystem` implementations are provided.
These provide an in-memory file-system which emulates operating systems
like OS/X, Unix and Windows.
The current file system is always available via the static method,
`FileSystem.getFileSystem()`. This is also used by a number of static
methods on `AbsoluteFsPath` and `PathSegment`, to avoid having to pass
`FileSystem` objects around all the time. The result of this is that one
must be careful to ensure that the file-system has been initialized before
using any of these static methods. To prevent this happening accidentally
the current file system always starts out as an instance of `InvalidFileSystem`,
which will throw an error if any of its methods are called.
You can set the current file-system by calling `FileSystem.setFileSystem()`.
During testing you can call the helper function `initMockFileSystem(os)`
which takes a string name of the OS to emulate, and will also monkey-patch
aspects of the TypeScript library to ensure that TS is also using the
current file-system.
Finally there is the `NgtscCompilerHost` to be used for any TypeScript
compilation, which uses a given file-system.
All tests that interact with the file-system should be tested against each
of the mock file-systems. A series of helpers have been provided to support
such tests:
* `runInEachFileSystem()` - wrap your tests in this helper to run all the
wrapped tests in each of the mock file-systems.
* `addTestFilesToFileSystem()` - use this to add files and their contents
to the mock file system for testing.
* `loadTestFilesFromDisk()` - use this to load a mirror image of files on
disk into the in-memory mock file-system.
* `loadFakeCore()` - use this to load a fake version of `@angular/core`
into the mock file-system.
All ngcc and ngtsc source and tests now use this virtual file-system setup.
PR Close#30921
To support skipping analysis of a file containing a component
we need to know that none of the declarations that might affect
its ngtsc compilation have not changed. The files that we need to
check are those that contain classes from the `CompilationScope`
of the component. These classes are already tracked in the
`LocalModuleScopeRegistry`.
This commit modifies the `IvyCompilation` class to record the
files that are in each declared class's `CompilationScope` via
a new method, `recordNgModuleScopeDependencies()`, that is called
after all the handlers have been "resolved".
Further, if analysis is skipped for a declared class, then we need
to recover the analysis from the previous compilation run. To
support this, the `IncrementalState` class has been updated to
expose the `MetadataReader` and `MetadataRegistry` interfaces.
This is included in the `metaRegistry` object to capture these analyses,
and also in the `localMetaReader` as a fallback to use if the
current compilation analysis was skipped.
PR Close#30238