angular-docs-cn/public/docs/ts/latest/guide/architecture.jade

603 lines
26 KiB
Plaintext

block includes
include ../_util-fns
- var _library_module = 'library module'
- var _at_angular = '@angular'
:marked
Angular 2 is a framework to help us build client applications in HTML and
either JavaScript or a language (like Dart or TypeScript) that compiles to JavaScript.
block angular-parts
:marked
The framework consists of several cooperating libraries, some of them core and some optional.
:marked
We write Angular applications by composing HTML *templates* with Angularized-markup,
writing *component* classes to manage those templates, adding application logic in *services*,
and boxing components and services in *modules*.
Then we launch the app by *bootstrapping* the top _root module_.
Angular takes over, presenting our application content in a browser and
responding to user interactions according to the instructions we provided.
Of course there is more to it than this.
We'll learn the details when we dive into the guide chapters.
Let's get the big picture first.
figure
img(src="/resources/images/devguide/architecture/overview2.png" alt="overview" style="margin-left:-40px;" width="700")
:marked
The architecture diagram identifies the eight main building blocks of an Angular 2 application:
1. [Modules](#modules)
1. [Components](#components)
1. [Templates](#templates)
1. [Metadata](#metadata)
1. [Data binding](#data-binding)
1. [Directives](#directives)
1. [Services](#services)
1. [Dependency injection](#dependency-injection)
Learn these, and we're on our way.
.l-sub-section
p The code referenced in this chapter is available as a #[+liveExampleLink2()].
.l-main-section
:marked
## Modules
figure
img(src="/resources/images/devguide/architecture/module.png" alt="Component" align="left" style="width:240px; margin-left:-40px;margin-right:10px" )
:marked
Angular apps are modular and Angular has its own modularity system called _Angular Modules_ or _NgModules_.
_Angular Modules_ are a big deal.
We can only introduce them here; the [Angular Modules](ngmodule.html) chapter covers modules in depth.
<br clear="all"><br>
:marked
Every Angular app has at least one module, the _root module_, conventionally named `AppModule`.
While the _root_ module may be the only module in a small application, most apps have many more
_feature_ modules, each a cohesive block of code dedicated to an application domain,
a workflow, or a closely-related set of capabilities.
An Angular module, whether a _root_ or _feature_, is a class with an `@NgModule` decorator.
.l-sub-section
:marked
Decorators are functions that modify JavaScript classes.
Angular has many decorators that attach metadata to classes so that it knows
what those classes mean and how they should work.
<a href="https://medium.com/google-developers/exploring-es7-decorators-76ecb65fb841#.x5c2ndtx0" target="_blank">
Learn more</a> about decorators on the web.
:marked
`NgModule` is a decorator function that takes a single metadata object whose properties describe the module.
The most important are
* `declarations` - the _view classes_ that belong to this module.
Angular has three kinds of view classes: [components](#components), [directives](#directives) and [pipes](pipes.html).
* `exports` - subset of declarations that should be visible and usable in the component [templates](#templates) of other modules.
* `imports` - other modules whose exported classes are needed by component templates declared in _this_ module.
* `providers` creators of [services](#services) that this module contributes to
the global collection of services; they become accessible in all parts of the app.
* `bootstrap` - identifies the main application view, called the _root component_,
that hosts all other app views. Only the _root module_ should set this `bootstrap` property.
Here's a simple root module:
+makeExample('app/mini-app.ts', 'module', 'app/app.module.ts')(format='.')
.l-sub-section
:marked
The `export` of `AppComponent` is just for show.
A root module has no reason to export anything because ... it's the root.
We don't expect other modules to import the root module.
But if one did, it could use the `AppComponent` in its component templates.
:marked
We launch an application by _bootstrapping_ its root module.
During development we're likely to bootstrap the `AppModule` in a `main.ts` file like this one.
+makeExample('app/main.ts', '', 'app/main.ts')(format='.')
:marked
### Angular Modules vs. JavaScript Modules
The Angular module &mdash; a class decorated with `@NgModule` &mdash; is a fundamental feature of Angular itself.
JavaScript also has its own module system for managing collections of JavaScript objects.
It's completely different and unrelated to the Angular module system.
In JavaScript each _file_ is a module and all objects defined in the file belong to that module.
The module declares some objects to be public by marking them with the `export` key word.
Other JavaScript modules use *import statements* to access public objects from other modules.
+makeExample('app/app.module.ts', 'imports', '')(format='.')
+makeExample('app/app.module.ts', 'export', '')(format='.')
.l-sub-section
:marked
<a href="http://exploringjs.com/es6/ch_modules.html" target="_blank">Learn more about the JavaScript module system on the web.</a>
:marked
These are two different and _complementary_ module systems. We use them both to write our apps.
### Angular Libraries
figure
img(src="/resources/images/devguide/architecture/library-module.png" alt="Component" align="left" style="width:240px; margin-left:-40px;margin-right:10px" )
:marked
Angular itself ships as a collection of JavaScript modules. We can think of them as library modules.
Each Angular library name begin with the `!{_at_angular}` prefix.
We install them with the **npm** package manager and import parts of them with JavaScript `import` statements.
<br clear="all"><br>
:marked
For example, we import Angular's `Component` decorator from the `@angular/core` library like this:
+makeExample('app/app.component.ts', 'import', '')(format='.')
:marked
We also import Angular _modules_ from Angular _libraries_ using JavaScript import statements:
+makeExample('app/mini-app.ts', 'import-browser-module', '')(format='.')
:marked
Our application module needs material from within that `BrowserModule`
so we add it to the `@NgModule` metadata `imports` like this.
+makeExample('app/mini-app.ts', 'ngmodule-imports', '')(format='.')
:marked
We're using both the Angular and JavaScript module systems _together_.
It's easy to confuse the two systems because they share the common vocabulary of "imports" and "exports".
Hang in there. The confusion will yield to clarity with time and experience.
.l-sub-section
:marked
Learn more in the [Angular Modules](ngmodule.html) chapter.
.l-hr
.l-main-section
:marked
## Components
figure
img(src="/resources/images/devguide/architecture/hero-component.png" alt="Component" align="left" style="width:200px; margin-left:-40px;margin-right:10px" )
:marked
A **component** controls a patch of screen real estate that we could call a *view*.
The shell at the application root with navigation links, a list of heroes, a hero editor ...
they're all views controlled by components.
We define a component's application logic &mdash; what it does to support the view &mdash; inside a class.
The class interacts with the view through an API of properties and methods.
<a id="component-code"></a>
A `HeroListComponent`, for example, might have a `heroes` property that returns !{_an} !{_array} of heroes
that it acquired from a service.
It might have a `selectHero()` method that sets a `selectedHero` property when the user clicks to choose a hero from that list.
The component might be a class like this:
+makeExcerpt('app/hero-list.component.ts', 'class')
:marked
Angular creates, updates, and destroys components as the user moves through the application.
The developer can take action at each moment in this lifecycle through optional [lifecycle hooks](lifecycle-hooks.html), like `ngOnInit()` declared above.
.l-sub-section
:marked
We may wonder who is calling the component's constructor? Who provides the service parameter?
For the moment, have faith that Angular will call the constructor and deliver an
appropriate `HeroService` when we need it.
.l-hr
.l-main-section
:marked
## Templates
figure
img(src="/resources/images/devguide/architecture/template.png" alt="Template" align="left" style="width:200px; margin-left:-40px;margin-right:10px" )
:marked
We define a component's view with its companion **template**. A template is a form of HTML
that tells Angular how to render the component.
A template looks like regular HTML much of the time ... and then it gets a bit strange. Here is a
template for our `HeroListComponent`:
+makeExample('app/hero-list.component.html')
:marked
This template features typical HTML elements like `<h2>` and `<p>`.
But what are `*ngFor`, `{{hero.name}}`, `(click)`, `[hero]`, and `<hero-detail>`?
These are examples of Angular's [template syntax](template-syntax.html).
We will grow accustomed to that syntax and may even learn to love it.
We'll begin to explain it in a moment.
Before we do, focus attention on the last line.
The `<hero-detail>` tag is a custom element representing the `HeroDetailComponent`.
The `HeroDetailComponent` is a *different* component than the `HeroListComponent` we've been reviewing.
The `HeroDetailComponent` (code not shown) presents facts about a particular hero, the
hero that the user selects from the list presented by the `HeroListComponent`.
The `HeroDetailComponent` is a **child** of the `HeroListComponent`.
figure
img(src="/resources/images/devguide/architecture/component-tree.png" alt="Metadata" align="left" style="width:300px; margin-left:-40px;margin-right:10px" )
:marked
Notice how `<hero-detail>` rests comfortably among native HTML elements.
We can and _will_ mix our custom components with native HTML in the same layouts.
In this manner we'll compose complex component trees to build out our richly featured application.
<br clear="all">
.l-hr
.l-main-section
:marked
## Metadata
figure
img(src="/resources/images/devguide/architecture/metadata.png" alt="Metadata" align="left" style="width:150px; margin-left:-40px;margin-right:10px" )
:marked
<p style="padding-top:10px">Metadata tells Angular how to process a class.</p>
<br clear="all">
:marked
[Looking back at the code](#component-code) for `HeroListComponent`, we see that it's just a class.
There is no evidence of a framework, no "Angular" in it at all.
In fact, it really is *just a class*. It's not a component until we *tell Angular about it*.
We tell Angular that `HeroListComponent` is a component by attaching **metadata** to the class.
In !{_Lang}, we attach metadata by using !{_a} **!{_decorator}**.
Here's some metadata for `HeroListComponent`:
+makeExcerpt('app/hero-list.component.ts', 'metadata')
:marked
Here we see the `@Component` !{_decorator} which (no surprise) identifies the class
immediately below it as a component class.
block ts-decorator
:marked
The `@Component` decorator takes a required configuration object with the
information Angular needs to create and present the component and its view.
Here are a few of the possible `@Component` configuration options:
:marked
- `selector`: CSS selector that tells Angular to create and insert an instance of this component
where it finds a `<hero-list>` tag in *parent* HTML.
For example, if an app's HTML contains `<hero-list></hero-list>`, then
Angular inserts an instance of the `HeroListComponent` view between those tags.
- `templateUrl`: address of this component's template, which we showed [above](#templates).
- `directives`: !{_array} of the components or directives that *this* template requires.
We saw in the last line of our template that we expect Angular to insert a `HeroDetailComponent`
in the space indicated by `<hero-detail>` tags.
Angular will do so only if we mention the `HeroDetailComponent` in this `directives` !{_array}.
- `providers`: !{_array} of **dependency injection providers** for services that the component requires.
This is one way to tell Angular that our component's constructor requires a `HeroService`
so it can get the list of heroes to display. We'll get to dependency injection later.
figure
img(src="/resources/images/devguide/architecture/template-metadata-component.png" alt="Metadata" align="left" style="height:200px; margin-left:-40px;margin-right:10px" )
:marked
Angular reads the metadata specified by the `@Component`
annotation. That's how Angular learns to do "the right thing".
The template, metadata, and component together describe a view.
We apply other metadata !{_decorator}s in a similar fashion to guide Angular behavior.
`@Injectable`, `@Input`, and `@Output` are a few of the more popular !{_decorator}s
we'll master as our Angular knowledge grows.
<br clear="all">
:marked
The architectural takeaway is that we must add metadata to our code
so that Angular knows what to do.
.l-hr
.l-main-section
:marked
## Data binding
Without a framework, we would be responsible for pushing data values into the HTML controls and turning user responses
into actions and value updates. Writing such push/pull logic by hand is tedious, error-prone, and a nightmare to
read as any experienced jQuery programmer can attest.
figure
img(src="/resources/images/devguide/architecture/databinding.png" alt="Data Binding" style="width:220px; float:left; margin-left:-40px;margin-right:20px" )
:marked
Angular supports **data binding**,
a mechanism for coordinating parts of a template with parts of a component.
We add binding markup to the template HTML to tell Angular how to connect both sides.
There are four forms of data binding syntax. Each form has a direction &mdash; to the DOM, from the DOM, or in both directions &mdash;
as indicated by the arrows in the diagram.
<br clear="all">
:marked
We saw three forms of data binding in our [example](#templates) template:
+makeExcerpt('app/hero-list.component.1.html', 'binding')
:marked
* The `{{hero.name}}` [*interpolation*](displaying-data.html#interpolation)
displays the component's `hero.name` property value within the `<li>` tags.
* The `[hero]` [*property binding*](template-syntax.html#property-binding) passes the value of `selectedHero` from
the parent `HeroListComponent` to the `hero` property of the child `HeroDetailComponent`.
* The `(click)` [*event binding*](user-input.html#click) calls the component's `selectHero` method when the user clicks a hero's name.
**Two-way data binding** is an important fourth form
that combines property and event binding in a single notation, using the `ngModel` directive.
We didn't have a two-way binding in the `HeroListComponent` template;
here's an example from the `HeroDetailComponent` template:
+makeExcerpt('app/hero-detail.component.html', 'ngModel')
:marked
In two-way binding, a data property value flows to the input box from the component as with property binding.
The user's changes also flow back to the component, resetting the property to the latest value,
as with event binding.
Angular processes *all* data bindings once per JavaScript event cycle,
from the root of the application component tree down to the leaves.
figure
img(src="/resources/images/devguide/architecture/component-databinding.png" alt="Data Binding" style="float:left; width:300px; margin-left:-40px;margin-right:10px" )
:marked
We don't know all the details yet,
but it's clear from these examples that data binding plays an important role in communication
between a template and its component.
<br clear="all">
figure
img(src="/resources/images/devguide/architecture/parent-child-binding.png" alt="Parent/Child binding" style="float:left; width:300px; margin-left:-40px;margin-right:10px" )
:marked
Data binding is also important for communication between parent and child components.
<br clear="all">
.l-hr
.l-main-section
:marked
## Directives
figure
img(src="/resources/images/devguide/architecture/directive.png" alt="Parent child" style="float:left; width:150px; margin-left:-40px;margin-right:10px" )
:marked
Angular templates are *dynamic*. When Angular renders them, it transforms the DOM
according to the instructions given by **directives**.
A directive is a class with directive metadata. In !{_Lang} we apply the `@Directive` !{_decorator}
to attach metadata to the class.
<br clear="all">
:marked
We already met one form of directive: the component. A component is a *directive-with-a-template*;
a `@Component` !{_decorator} is actually a `@Directive` !{_decorator} extended with template-oriented features.
.l-sub-section
:marked
While **a component is technically a directive**,
components are so distinctive and central to Angular applications that we chose
to separate components from directives in this architectural overview.
:marked
Two *other* kinds of directives exist: _structural_ and _attribute_ directives.
They tend to appear within an element tag as attributes do,
sometimes by name but more often as the target of an assignment or a binding.
**Structural** directives alter layout by adding, removing, and replacing elements in DOM.
Our [example](#templates) template uses two built-in structural directives:
+makeExcerpt('app/hero-list.component.1.html', 'structural')
:marked
* [`*ngFor`](displaying-data.html#ngFor) tells Angular to stamp out one `<li>` per hero in the `heroes` list.
* [`*ngIf`](displaying-data.html#ngIf) includes the `HeroDetail` component only if a selected hero exists.
block dart-bool
//- N/A
:marked
**Attribute** directives alter the appearance or behavior of an existing element.
In templates they look like regular HTML attributes, hence the name.
The `ngModel` directive, which implements two-way data binding, is
an example of an attribute directive. `ngModel` modifies the behavior of
an existing element (typically an `<input>`)
by setting its display value property and responding to change events.
+makeExcerpt('app/hero-detail.component.html', 'ngModel')
:marked
Angular ships with a small number of other directives that either alter the layout structure
(for example, [ngSwitch](template-syntax.html#ngSwitch))
or modify aspects of DOM elements and components
(for example, [ngStyle](template-syntax.html#ngStyle) and [ngClass](template-syntax.html#ngClass)).
Of course, we can also write our own directives. Components such as
`HeroListComponent` are one kind of custom directive.
<!-- PENDING: link to where to learn more about other kinds! -->
.l-hr
.l-main-section
:marked
## Services
figure
img(src="/resources/images/devguide/architecture/service.png" alt="Service" style="float:left; margin-left:-40px;margin-right:10px" )
:marked
_Service_ is a broad category encompassing any value, function, or feature that our application needs.
Almost anything can be a service.
A service is typically a class with a narrow, well-defined purpose. It should do something specific and do it well.
<br clear="all">
:marked
Examples include:
* logging service
* data service
* message bus
* tax calculator
* application configuration
There is nothing specifically _Angular_ about services. Angular itself has no definition of a service.
There is no service base class, and no place to register a service.
Yet services are fundamental to any Angular application. Our components are big consumers of services.
Here's an example of a service class that logs to the browser console
+makeExcerpt('app/logger.service.ts', 'class')
:marked
Here's a `HeroService` that fetches heroes and returns them in a resolved !{_PromiseLinked}.
The `HeroService` depends on the `Logger` service and another `BackendService` that handles the server communication grunt work.
+makeExcerpt('app/hero.service.ts', 'class')
:marked
Services are everywhere.
We prefer our component classes lean. Our components don't fetch data from the server,
they don't validate user input, and they don't log directly to the console.
They delegate such tasks to services.
A component's job is to enable the user experience and nothing more. It mediates between the view (rendered by the template)
and the application logic (which often includes some notion of a _model_).
A good component presents properties and methods for data binding.
It delegates everything nontrivial to services.
Angular doesn't *enforce* these principles.
It won't complain if we write a "kitchen sink" component with 3000 lines.
Angular does help us *follow* these principles by making it easy to factor our
application logic into services and make those services available to components through *dependency injection*.
.l-hr
.l-main-section
:marked
## Dependency injection
figure
img(src="/resources/images/devguide/architecture/dependency-injection.png" alt="Service" style="float:left; width:200px; margin-left:-40px;margin-right:10px" )
:marked
_Dependency injection_ is a way to supply a new instance of a class
with the fully-formed dependencies it requires. Most dependencies are services.
Angular uses dependency injection to provide new components with the services they need.
<br clear="all">
:marked
Angular can tell which services a component needs by looking at the types of its constructor parameters.
For example, the constructor of our `HeroListComponent` needs a `HeroService`:
+makeExcerpt('app/hero-list.component.ts (constructor)', 'ctor')
:marked
When Angular creates a component, it first asks an **injector** for
the services that the component requires.
An injector maintains a container of service instances that it has previously created.
If a requested service instance is not in the container, the injector makes one and adds it to the container
before returning the service to Angular.
When all requested services have been resolved and returned,
Angular can call the component's constructor with those services as arguments.
This is what we mean by *dependency injection*.
The process of `HeroService` injection looks a bit like this:
figure
img(src="/resources/images/devguide/architecture/injector-injects.png" alt="Service" )
:marked
If the injector doesn't have a `HeroService`, how does it know how to make one?
In brief, we must have previously registered a **provider** of the `HeroService` with the injector.
A provider is something that can create or return a service, typically the service class itself.
We can register providers in modules or in components.
We often add providers to the [root module](#module) so that
the same instance of a service is available everywhere.
+makeExample('app/app.module.ts', 'providers', 'app/app.module.ts (module providers)')(format='.')
:marked
Alternatively, we might register at a component level in the `providers` property of the `@Component` metadata:
+makeExample('app/hero-list.component.ts', 'providers', 'app/hero-list.component.ts (component providers)')(format='.')
:marked
Registering at a component level means we get a new instance of the
service with each new instance of that component.
<!-- We've vastly oversimplified dependency injection for this overview.
The full story is in the [Dependency Injection](dependency-injection.html) chapter. -->
Points to remember about dependency injection:
* Dependency injection is wired into the Angular framework and used everywhere.
* The *injector* is the main mechanism.
* An injector maintains a *container* of service instances that it created.
* An injector can create a new service instance from a *provider*.
* A *provider* is a recipe for creating a service.
* We register *providers* with injectors.
.l-hr
.l-main-section
:marked
## Wrap up
We've learned just a bit about the eight main building blocks of an Angular application:
1. [Modules](#modules)
1. [Components](#components)
1. [Templates](#templates)
1. [Metadata](#metadata)
1. [Data binding](#data-binding)
1. [Directives](#directives)
1. [Services](#services)
1. [Dependency injection](#dependency-injection)
That's a foundation for everything else in an Angular application,
and it's more than enough to get going.
But it doesn't include everything we'll need or want to know.
Here is a brief, alphabetical list of other important Angular features and services.
Most of them are covered in this Developers Guide (or soon will be).
> [**Animations**](animations.html): The animation library makes it easy for developers to animate component behavior
without deep knowledge of animation techniques or CSS.
> **Change detection**: Learn how Angular decides that a component property value has changed and
when to update the screen.
Learn how it uses **zones** to intercept asynchronous activity and run its change detection strategies.
> **Events**: The DOM raises events. So can components and services. Angular offers mechanisms for
publishing and subscribing to events.
> [**Forms**](forms.html): Support complex data entry scenarios with HTML-based validation and dirty checking.
> [**HTTP**](server-communication.html): Communicate with a server to get data, save data, and invoke server-side actions with an HTTP client.
> [**Lifecycle hooks**](lifecycle-hooks.html): We can tap into key moments in the lifetime of a component, from its creation to its destruction,
by implementing the lifecycle hook interfaces.
> [**Pipes**](pipes.html): Services that transform values for display.
We can put pipes in our templates to improve the user experience. Consider
this `currency` pipe expression:
<div style="margin-left:40px">
code-example().
price | currency:'USD':true
</div>
:marked
> It displays a price of "42.33" as `$42.33`.
> [**Router**](router.html): Navigate from page to page within the client
application and never leave the browser.
> [**Testing**](testing.html): Angular provides a
[testing library](https://pub.dartlang.org/packages/angular2_testing)
to run unit tests on our application parts as they interact with the Angular framework.