1361 lines
63 KiB
Plaintext
1361 lines
63 KiB
Plaintext
block includes
|
||
include ../_util-fns
|
||
- var _thisDot = 'this.';
|
||
|
||
:marked
|
||
**Dependency injection** is an important application design pattern.
|
||
Angular has its own dependency injection framework, and
|
||
we really can't build an Angular application without it.
|
||
It's used so widely that almost everyone just calls it _DI_.
|
||
|
||
**依赖注入**是一个很重要的程序设计模式。
|
||
Angular有自己的依赖注入框架,离开了它,我们几乎没法构建Angular应用。
|
||
它使用得非常广泛,以至于几乎每个人都会把它简称为_DI_。
|
||
|
||
In this chapter we'll learn what DI is and why we want it.
|
||
Then we'll learn [how to use it](#angular-di) in an Angular app.
|
||
|
||
在本章中,我们将学习DI是什么,以及我们为什么需要它。
|
||
然后,我们将学习在Angular应用中该[如何使用它](#angular-di)。
|
||
|
||
- [Why dependency injection?](#why-dependency-injection)
|
||
- [为什么依赖注入?](#why-dependency-injection)
|
||
- [Angular dependency injection](#angular-dependency-injection)
|
||
- [Angular依赖注入](#angular-dependency-injection)
|
||
- [Injector providers](#injector-providers)
|
||
- [注入器供应商](#injector-providers)
|
||
- [Dependency injection tokens](#dependency-injection-tokens)
|
||
- [依赖注入令牌](#dependency-injection-tokens)
|
||
- [Summary](#summary)
|
||
- [总结](#summary)
|
||
|
||
p Run the #[+liveExampleLink2()].
|
||
p 运行#[+liveExampleLink2('在线例子')].
|
||
|
||
.l-main-section#why-di
|
||
:marked
|
||
## Why dependency injection?
|
||
## 为什么需要依赖注入?
|
||
|
||
Let's start with the following code.
|
||
|
||
我们从下列代码开始:
|
||
|
||
+makeExample('dependency-injection/ts/app/car/car-no-di.ts', 'car', 'app/car/car.ts (without DI)')
|
||
|
||
:marked
|
||
Our `Car` creates everything it needs inside its constructor.
|
||
What's the problem?
|
||
|
||
我们的`Car`类会在它的构造函数中亲自创建所需的每样东西。
|
||
问题何在?
|
||
|
||
The problem is that our `Car` class is brittle, inflexible, and hard to test.
|
||
|
||
问题在于,我们这个`Car`类过于脆弱、缺乏弹性并且难以测试。
|
||
|
||
Our `Car` needs an engine and tires. Instead of asking for them,
|
||
the `Car` constructor instantiates its own copies from
|
||
the very specific classes `Engine` and `Tires`.
|
||
|
||
我们的`Car`类需要一个`Engine`和`Tires`,它没有去请求一个现成的实例,
|
||
而是在构造函数中用具体的`Engine`和`Tires`类新创建了一份只供自己用的副本。
|
||
|
||
What if the `Engine` class evolves and its constructor requires a parameter?
|
||
Our `Car` is broken and stays broken until we rewrite it along the lines of
|
||
`#{_thisDot}engine = new Engine(theNewParameter)`.
|
||
We didn't care about `Engine` constructor parameters when we first wrote `Car`.
|
||
We don't really care about them now.
|
||
But we'll *have* to start caring because
|
||
when the definition of `Engine` changes, our `Car` class must change.
|
||
That makes `Car` brittle.
|
||
|
||
如果`Engine`类升级了,并且它的构造函数要求传入一个参数了,该怎么办?
|
||
我们这个`Car`类就被破坏了,而且直到我们把创建引擎的代码重写为`#{prefix}engine = new Engine(theNewParameter)`之前,它都是坏的。
|
||
当我们首次写`Car`类时,我们不会在乎`Engine`构造函数的参数。现在我们也不想在乎。
|
||
但是当`Engine`类的定义发生变化时,我们就不得不在乎了,`Car`类也不得不跟着改变。
|
||
这就会让`Car`类过于脆弱。
|
||
|
||
What if we want to put a different brand of tires on our `Car`? Too bad.
|
||
We're locked into whatever brand the `Tires` class creates. That makes our `Car` inflexible.
|
||
|
||
如果我们想在我们的`Car`上用一个不同品牌的轮胎会怎样?太糟了。
|
||
我们被锁死在`Tires`类创建时使用的那个品牌上。这让我们的`Car`类缺乏弹性。
|
||
|
||
Right now each new car gets its own engine. It can't share an engine with other cars.
|
||
While that makes sense for an automobile engine,
|
||
we can think of other dependencies that should be shared, such as the onboard
|
||
wireless connection to the manufacturer's service center. Our `Car` lacks the flexibility
|
||
to share services that have been created previously for other consumers.
|
||
|
||
现在,每辆车都有它自己的引擎。它不能和其它车辆共享引擎。
|
||
虽然这对于汽车来说还算可以理解,但是我们设想一下那些应该被共享的依赖,比如用来联系厂家服务中心的车载无线。
|
||
我们的车缺乏必要的弹性,无法共享当初给其他消费者创建的车载无线。
|
||
|
||
When we write tests for our `Car` we're at the mercy of its hidden dependencies.
|
||
Is it even possible to create a new `Engine` in a test environment?
|
||
What does `Engine`itself depend upon? What does that dependency depend on?
|
||
Will a new instance of `Engine` make an asynchronous call to the server?
|
||
We certainly don't want that going on during our tests.
|
||
|
||
当我们给`Car`类写测试的时候,我们被它那些隐藏的依赖所摆布。
|
||
你以为能在测试环境中成功创建一个新的`Engine`吗?
|
||
`Engine`自己又依赖什么?那些依赖本身又依赖什么?
|
||
`Engine`的新实例会发起一个到服务器的异步调用吗?
|
||
我们当然不想在测试期间这么一层层追下去。
|
||
|
||
What if our `Car` should flash a warning signal when tire pressure is low?
|
||
How do we confirm that it actually does flash a warning
|
||
if we can't swap in low-pressure tires during the test?
|
||
|
||
如果我们的`Car`应该在轮胎气压低的时候闪动一个警示灯该怎么办?
|
||
如果我们没法在测试期间换上一个低气压的轮胎,我们该如何确认它能正确的闪警示灯?
|
||
|
||
We have no control over the car's hidden dependencies.
|
||
When we can't control the dependencies, a class becomes difficult to test.
|
||
|
||
我们没法控制这辆车背后隐藏的依赖。
|
||
当我们不能控制依赖时,类就会变得难以测试。
|
||
|
||
How can we make `Car` more robust, flexible, and testable?
|
||
|
||
我们该如何让`Car`更强壮、有弹性以及可测试?
|
||
|
||
<a id="ctor-injection"></a>
|
||
That's super easy. We change our `Car` constructor to a version with DI:
|
||
|
||
<a id="ctor-injection"></a>
|
||
答案超级简单。我们把`Car`的构造函数改造成使用DI的版本:
|
||
|
||
+makeTabs(
|
||
'dependency-injection/ts/app/car/car.ts, dependency-injection/ts/app/car/car-no-di.ts',
|
||
'car-ctor, car-ctor',
|
||
'app/car/car.ts (excerpt with DI), app/car/car.ts (excerpt without DI)')(format=".")
|
||
|
||
'app/car/car.ts (使用DI的代码节选), app/car/car.ts (不用DI的代码节选)')(format=".")
|
||
|
||
:marked
|
||
See what happened? We moved the definition of the dependencies to the constructor.
|
||
Our `Car` class no longer creates an engine or tires.
|
||
It just consumes them.
|
||
|
||
发生了什么?我们把依赖的定义移到了构造函数中。
|
||
我们的`Car`类不再创建引擎或者轮胎。
|
||
它仅仅“消费”它们。
|
||
|
||
block ctor-syntax
|
||
.l-sub-section
|
||
:marked
|
||
We also leverage TypeScript's constructor syntax for declaring parameters and properties simultaneously.
|
||
|
||
我们再次借助TypeScript的构造器语法来同时定义参数和属性。
|
||
|
||
:marked
|
||
Now we create a car by passing the engine and tires to the constructor.
|
||
|
||
现在,我们通过往构造函数中传入引擎和轮胎来创建一辆车。
|
||
|
||
+makeExample('dependency-injection/ts/app/car/car-creations.ts', 'car-ctor-instantiation', '')(format=".")
|
||
|
||
:marked
|
||
How cool is that?
|
||
The definition of the engine and tire dependencies are
|
||
decoupled from the `Car` class itself.
|
||
We can pass in any kind of engine or tires we like, as long as they
|
||
conform to the general API requirements of an engine or tires.
|
||
|
||
酷!引擎和轮胎这两个“依赖”的定义从`Car`类本身解耦开了。
|
||
只要喜欢,我们就可以传入任何类型的引擎或轮胎,只要它们能满足引擎或轮胎的通用API需求。
|
||
|
||
If someone extends the `Engine` class, that is not `Car`'s problem.
|
||
|
||
如果有人扩展了`Engine`类,那就不再是`Car`类的烦恼了。
|
||
|
||
.l-sub-section
|
||
:marked
|
||
The _consumer_ of `Car` has the problem. The consumer must update the car creation code to
|
||
something like this:
|
||
|
||
`Car`的_消费者_也有这个问题。消费者必须更新创建这辆车的代码,就像这样:
|
||
|
||
- var stylePattern = { otl: /(new Car.*$)/gm };
|
||
+makeExample('dependency-injection/ts/app/car/car-creations.ts', 'car-ctor-instantiation-with-param', '', stylePattern)(format=".")
|
||
|
||
:marked
|
||
The critical point is this: `Car` itself did not have to change.
|
||
We'll take care of the consumer's problem soon enough.
|
||
|
||
这里的要点是:`Car`本身不必变化。我们很快就来解决消费者的问题。
|
||
|
||
:marked
|
||
The `Car` class is much easier to test because we are in complete control
|
||
of its dependencies.
|
||
We can pass mocks to the constructor that do exactly what we want them to do
|
||
during each test:
|
||
|
||
`Car`类非常容易测试,因为我们现在对它的依赖有了完全的控制权。
|
||
在每个测试期间,我们可以往构造函数中传入mock对象,做到我们想让它们做的事:
|
||
|
||
- var stylePattern = { otl: /(new Car.*$)/gm };
|
||
+makeExample('dependency-injection/ts/app/car/car-creations.ts', 'car-ctor-instantiation-with-mocks', '', stylePattern)(format=".")
|
||
|
||
:marked
|
||
**We just learned what dependency injection is**.
|
||
|
||
**我们刚刚学到了什么是依赖注入**
|
||
|
||
It's a coding pattern in which a class receives its dependencies from external
|
||
sources rather than creating them itself.
|
||
|
||
它是一种编程模式,该模式可以让一个类从外部源中获得它的依赖,而不必亲自创建它们。
|
||
|
||
Cool! But what about that poor consumer?
|
||
Anyone who wants a `Car` must now
|
||
create all three parts: the `Car`, `Engine`, and `Tires`.
|
||
The `Car` class shed its problems at the consumer's expense.
|
||
We need something that takes care of assembling these parts for us.
|
||
|
||
酷!但是,可怜的消费者怎么办?
|
||
那些希望得到一个`Car`的人们现在必须创建所有这三部分了:`Car`、`Engine`和`Tires`。
|
||
`Car`类把它的快乐建立在了消费者的痛苦之上。
|
||
我们需要某种机制把这三个部分装配好。
|
||
|
||
We could write a giant class to do that:
|
||
|
||
我们可以写一个巨型类来做这件事(不好的模式):
|
||
|
||
+makeExample('dependency-injection/ts/app/car/car-factory.ts', null, 'app/car/car-factory.ts')
|
||
|
||
:marked
|
||
It's not so bad now with only three creation methods.
|
||
But maintaining it will be hairy as the application grows.
|
||
This factory is going to become a huge spiderweb of
|
||
interdependent factory methods!
|
||
|
||
现在只需要三个创建方法,这还不算太坏。
|
||
但是当应用规模变大之后,维护它将变得惊险重重。
|
||
这个工厂类将变成一个由相互依赖的工厂方法构成的巨型蜘蛛网。
|
||
|
||
Wouldn't it be nice if we could simply list the things we want to build without
|
||
having to define which dependency gets injected into what?
|
||
|
||
如果我们能简单的列出我们想建造的东西,而不用定义该把哪些依赖注入到哪些对象中,那该多好!
|
||
|
||
This is where the dependency injection framework comes into play.
|
||
Imagine the framework had something called an _injector_.
|
||
We register some classes with this injector, and it figures out how to create them.
|
||
|
||
到了让依赖注入框架一展身手的时候了!
|
||
想象框架中有一个叫做_注入器Injector_的东西。
|
||
我们使用这个注入器注册一些类,它会指出该如何创建它们。
|
||
|
||
When we need a `Car`, we simply ask the injector to get it for us and we're good to go.
|
||
|
||
当我们需要一个`Car`时,就简单的找注入器取车就可以了。
|
||
|
||
+makeExample('dependency-injection/ts/app/car/car-injector.ts','injector-call')(format=".")
|
||
|
||
:marked
|
||
Everyone wins. The `Car` knows nothing about creating an `Engine` or `Tires`.
|
||
The consumer knows nothing about creating a `Car`.
|
||
We don't have a gigantic factory class to maintain.
|
||
Both `Car` and consumer simply ask for what they need and the injector delivers.
|
||
|
||
多方皆赢。`Car`不需要知道如何创建`Engine`和`Tires`的任何事。
|
||
消费者不知道如何创建`Car`的任何事。
|
||
我们不需要一个巨大的工厂类来维护它们。
|
||
`Car`和消费者只要简单的说出它们想要什么,注入器就会交给它们。
|
||
|
||
This is what a **dependency injection framework** is all about.
|
||
|
||
这就是“**依赖注入框架**”存在的原因。
|
||
|
||
Now that we know what dependency injection is and appreciate its benefits,
|
||
let's see how it is implemented in Angular.
|
||
|
||
现在,我们知道了依赖注入是什么,以及它的优点是什么。我们再来看看它在Angular中是怎么实现的。
|
||
|
||
.l-main-section#angular-di
|
||
:marked
|
||
## Angular dependency injection
|
||
## Angular依赖注入
|
||
|
||
Angular ships with its own dependency injection framework. This framework can also be used
|
||
as a standalone module by other applications and frameworks.
|
||
|
||
Angular自带了它自己的依赖注入框架。此框架也能被当做独立模块用于其它应用和框架中。
|
||
|
||
That sounds nice. What does it do for us when building components in Angular?
|
||
Let's see, one step at a time.
|
||
|
||
听起来很好。当我们在Angular中构建组件的时候,它到底能为我们做什么?
|
||
让我们一步一个脚印的看看。
|
||
|
||
We'll begin with a simplified version of the `HeroesComponent`
|
||
that we built in the [The Tour of Heroes](../tutorial/).
|
||
|
||
我们从当初在[英雄指南](../tutorial/)中构建过的`HeroesComponent`的一个简化版本开始。
|
||
|
||
+makeTabs(
|
||
`dependency-injection/ts/app/heroes/heroes.component.1.ts,
|
||
dependency-injection/ts/app/heroes/hero-list.component.1.ts,
|
||
dependency-injection/ts/app/heroes/hero.ts,
|
||
dependency-injection/ts/app/heroes/mock-heroes.ts`,
|
||
'v1,,,',
|
||
`app/heroes/heroes.component.ts,
|
||
app/heroes/hero-list.component.ts,
|
||
app/heroes/hero.ts,
|
||
app/heroes/mock-heroes.ts`)
|
||
|
||
:marked
|
||
The `HeroesComponent` is the root component of the *Heroes* feature area.
|
||
It governs all the child components of this area.
|
||
Our stripped down version has only one child, `HeroListComponent`,
|
||
which displays a list of heroes.
|
||
|
||
`HeroesComponent`是*英雄*特性区域的根组件。它管理本区的所有子组件。
|
||
我们简化后的版本只有一个子组件`HeroListComponent`,用来显示一个英雄列表。
|
||
|
||
:marked
|
||
Right now `HeroListComponent` gets heroes from `HEROES`, an in-memory collection
|
||
defined in another file.
|
||
That may suffice in the early stages of development, but it's far from ideal.
|
||
As soon as we try to test this component or want to get our heroes data from a remote server,
|
||
we'll have to change the implementation of `heroes` and
|
||
fix every other use of the `HEROES` mock data.
|
||
|
||
现在`HeroListComponent`从`HEROES`获得英雄数据,一个在另一个文件中定义的内存数据集。
|
||
它在开发的早期阶段可能还够用,但离完美就差得远了。
|
||
我们一旦开始测试此组件,或者想从远端服务器获得英雄数据,我们就不得不修改`heroes`的实现,并要修改每个用到了`HEROES`模拟数据的地方。
|
||
|
||
Let's make a service that hides how we get hero data.
|
||
|
||
我们来制作一个服务,把获取英雄数据的代码封装起来。
|
||
|
||
.l-sub-section
|
||
:marked
|
||
Given that the service is a
|
||
[separate concern](https://en.wikipedia.org/wiki/Separation_of_concerns),
|
||
we suggest that you
|
||
write the service code in its own file.
|
||
|
||
因为服务是一个[分离关注点](https://en.wikipedia.org/wiki/Separation_of_concerns),
|
||
我们建议你把服务代码放到它自己的文件里。
|
||
+ifDocsFor('ts')
|
||
:marked
|
||
See [this note](#one-class-per-file) for details.
|
||
|
||
到[这个笔记](#one-class-per-file)看更多信息。
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero.service.1.ts',null, 'app/heroes/hero.service.ts' )
|
||
|
||
:marked
|
||
Our `HeroService` exposes a `getHeroes` method that returns
|
||
the same mock data as before, but none of its consumers need to know that.
|
||
|
||
我们的`HeroService`暴露了`getHeroes`方法,用于返回跟以前一样的模拟数据,但它的消费者不需要知道这一点。
|
||
|
||
// #enddocregion di-4
|
||
// #docregion di-5
|
||
.l-sub-section
|
||
:marked
|
||
Notice the `@Injectable()` #{_decorator} above the service class.
|
||
We'll discuss its purpose [shortly](#injectable).
|
||
|
||
注意服务类上面这个`@Injectable()`装饰器。我们[很快](#injectable)会讨论它的用途。
|
||
|
||
- var _perhaps = _docsFor == 'dart' ? '' : 'perhaps';
|
||
.l-sub-section
|
||
:marked
|
||
We aren't even pretending this is a real service.
|
||
If we were actually getting data from a remote server, the API would have to be
|
||
asynchronous, #{_perhaps} returning a !{_PromiseLinked}.
|
||
We'd also have to rewrite the way components consume our service.
|
||
This is important in general, but not to our current story.
|
||
|
||
我们甚至没有假装这是一个真实的服务。
|
||
如果我们真的从一个远端服务器获取数据,这个API必须是异步的,可能得返回
|
||
[ES2015 承诺(Promise)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise)。
|
||
我们也需要被迫重新处理组件如何消费该服务的方式。通常这个很重要,但是我们目前的故事不需要。
|
||
|
||
:marked
|
||
A service is nothing more than a class in Angular 2.
|
||
It remains nothing more than a class until we register it with an Angular injector.
|
||
|
||
在Angular 2中,服务只是一个类。
|
||
除非我们把它注册进一个Angular注入器,否则它没有任何特别之处。
|
||
|
||
#bootstrap
|
||
:marked
|
||
### Configuring the injector
|
||
### 配置注入器
|
||
|
||
We don't have to create an Angular injector.
|
||
Angular creates an application-wide injector for us during the bootstrap process.
|
||
|
||
我们并不需要自己创建一个Angular注入器。
|
||
Angular在启动期间会自动为我们创建一个全应用级注入器。
|
||
|
||
+makeExample('dependency-injection/ts/app/main.ts', 'bootstrap', 'app/main.ts (excerpt)')(format='.')
|
||
|
||
:marked
|
||
We do have to configure the injector by registering the **providers**
|
||
that create the services our application requires.
|
||
We'll explain what [providers](#providers) are later in this chapter.
|
||
Before we do, let's see an example of provider registration during bootstrapping:
|
||
|
||
我们必须先注册**供应商Provider**来配置注入器,这些供应商为我们的应用程序创建所需服务。
|
||
我们将在本章的稍后部分解释什么是[供应商](#providers)。
|
||
在此之前,我们先来看一个在启动期间注册供应商的例子。
|
||
|
||
+makeExample('dependency-injection/ts/app/main.1.ts', 'bootstrap-discouraged')(format='.')
|
||
|
||
:marked
|
||
The injector now knows about our `HeroService`.
|
||
An instance of our `HeroService` will be available for injection across our entire application.
|
||
|
||
注入器现在知道了我们的`HeroService`类。
|
||
这样,一个`HeroService`实例就可以在我们整个应用中都可用了。
|
||
|
||
Of course we can't help wondering about that comment telling us not to do it this way.
|
||
It *will* work. It's just not a best practice.
|
||
The bootstrap provider option is intended for configuring and overriding Angular's own
|
||
preregistered services, such as its routing support.
|
||
|
||
当然,我们不禁要问,为什么注释中告诉我们不要这么做。
|
||
它*能*工作,但不是最佳实践。
|
||
bootstrap函数的供应商选项是用来配置和改写Angular自身的预注册服务的,比如它的路由支持。
|
||
|
||
The preferred approach is to register application providers in application components.
|
||
Because the `HeroService` is used within the *Heroes* feature area —
|
||
and nowhere else — the ideal place to register it is in the top-level `HeroesComponent`.
|
||
|
||
首选的方式是在应用的组件中注册供应商。
|
||
因为`HeroService`是用于*英雄*功能区的 —— 并且没别处用它 —— 所以注册它的理想地点就是顶层的`HeroesComponent`。
|
||
|
||
:marked
|
||
### Registering providers in a component
|
||
### 在组件中注册供应商
|
||
|
||
Here's a revised `HeroesComponent` that registers the `HeroService`.
|
||
|
||
这里是注册了`HeroService`的修改版`HeroesComponent`。
|
||
|
||
- var stylePattern = { otl: /(providers:.*),/ };
|
||
+makeExample('dependency-injection/ts/app/heroes/heroes.component.1.ts', 'full','app/heroes/heroes.component.ts', stylePattern)(format='.')
|
||
|
||
:marked
|
||
Look closely at the `providers` part of the `@Component` metadata.
|
||
An instance of the `HeroService` is now available for injection in this `HeroesComponent`
|
||
and all of its child components.
|
||
|
||
仔细看`@Component`元数据中的`providers`部分:现在,一个`HeroService`的实例就可以被注入到`HeroesComponent`及其全部子组件了。
|
||
|
||
The `HeroesComponent` itself doesn't happen to need the `HeroService`.
|
||
But its child `HeroListComponent` does, so we head there next.
|
||
|
||
`HeroesComponent`本身不需要`HeroService`,但它的子组件`HeroListComponent`需要,所以我们再往下看。
|
||
|
||
:marked
|
||
### Preparing the HeroListComponent for injection
|
||
### 为注入准备`HeroListComponent`
|
||
|
||
The `HeroListComponent` should get heroes from the injected `HeroService`.
|
||
Per the dependency injection pattern, the component must ask for the service in its
|
||
constructor, [as we explained earlier](#ctor-injection).
|
||
It's a small change:
|
||
|
||
`HeroListComponent`应该从注入进来的`HeroService`获取英雄数据。
|
||
遵照依赖注入模式的要求,组件必须在它的构造函数中请求这些服务,[就像我们以前解释过的那样](#ctor-injection)。
|
||
只是个小改动:
|
||
|
||
+makeTabs(
|
||
`dependency-injection/ts/app/heroes/hero-list.component.2.ts,
|
||
dependency-injection/ts/app/heroes/hero-list.component.1.ts`,
|
||
null,
|
||
`app/heroes/hero-list.component (with DI),
|
||
app/heroes/hero-list.component (without DI)`)
|
||
|
||
.l-sub-section
|
||
:marked
|
||
#### Focus on the constructor
|
||
#### 来看构造函数
|
||
|
||
Adding a parameter to the constructor isn't all that's happening here.
|
||
|
||
往构造函数中添加一个参数并不是这里所做的一切。
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero-list.component.2.ts', 'ctor')(format=".")
|
||
|
||
:marked
|
||
Note that the constructor parameter has the type `HeroService`, and that
|
||
the `HeroListComponent` class has an `@Component` #{_decorator}
|
||
(scroll up to confirm that fact).
|
||
Also recall that the parent component (`HeroesComponent`)
|
||
has `providers` information for `HeroService`.
|
||
|
||
注意构造函数参数有类型`HeroService`,并且`HeroListComponent`类有一个`@Component`装饰器
|
||
(往上翻可以确认)。另外,记得父级组件(`HeroesComponent`)有`HeroService`的`providers`信息。
|
||
|
||
The constructor parameter type, the `@Component` #{_decorator},
|
||
and the parent's `providers` information combine to tell the
|
||
Angular injector to inject an instance of
|
||
`HeroService` whenever it creates a new `HeroListComponent`.
|
||
|
||
该构造函数类型、`@Component`装饰器、父级的`providers`信息这三个合起来,一起告诉Angular的注入器,在任何时候新建一个新的`HeroListComponent`的时候,注入一个`HeroService`的实例。
|
||
|
||
#di-metadata
|
||
:marked
|
||
### Implicit injector creation
|
||
|
||
### 显性注入器的创建
|
||
|
||
When we introduced the idea of an injector above, we showed how to
|
||
use it to create a new `Car`. Here we also show how such an injector
|
||
would be explicitly created:
|
||
|
||
当我们在上面介绍注入器的时候,我们展示了如何使用它创建一个新`Car`。这里,我们也展示一下如何显性的创建这样的注入器:
|
||
|
||
+makeExample('dependency-injection/ts/app/car/car-injector.ts','injector-create-and-call')(format=".")
|
||
|
||
:marked
|
||
We won't find code like that in the Tour of Heroes or any of our other samples.
|
||
We *could* write code that [explicitly creates an injector](#explicit-injector) if we *had* to, but we rarely do.
|
||
Angular takes care of creating and calling injectors
|
||
when it creates components for us — whether through HTML markup, as in `<hero-list></hero-list>`,
|
||
or after navigating to a component with the [router](./router.html).
|
||
If we let Angular do its job, we'll enjoy the benefits of automated dependency injection.
|
||
|
||
但无论在《英雄指南》还是其它范例中,我们都没有发现这样的代码。
|
||
在必要时,我们*可以*写[使用显式注入器的代码](#explicit-injector),但却很少这样做。
|
||
当Angular为我们创建组件时 —— 无论通过像`<hero-list></hero-list>`这样的HTML标签还是通过[路由](./router.html)导航到组件 —— 它都会自己管理好注入器的创建和调用。
|
||
只要让Angular做好它自己的工作,我们就能安心享受“自动依赖注入”带来的好处。
|
||
|
||
:marked
|
||
### Singleton services
|
||
### 单例服务
|
||
|
||
Dependencies are singletons within the scope of an injector.
|
||
In our example, a single `HeroService` instance is shared among the
|
||
`HeroesComponent` and its `HeroListComponent` children.
|
||
|
||
在一个注入器的范围内,依赖都是单例的。
|
||
在我们这个例子中,一个单一的`HeroService`实例被`HeroesComponent`和它的子组件`HeroListComponent`共享。
|
||
|
||
However, Angular DI is an hierarchical injection
|
||
system, which means that nested injectors can create their own service instances.
|
||
Learn more about that in the [Hierarchical Injectors](./hierarchical-dependency-injection.html) chapter.
|
||
|
||
然而,Angular DI是一个分层的依赖注入系统,这意味着被嵌套的注入器可以创建它们自己的服务实例。
|
||
要了解更多知识,参见[多级依赖注入器](./hierarchical-dependency-injection.html)一章。
|
||
|
||
:marked
|
||
### Testing the component
|
||
### 测试组件
|
||
|
||
We emphasized earlier that designing a class for dependency injection makes the class easier to test.
|
||
Listing dependencies as constructor parameters may be all we need to test application parts effectively.
|
||
|
||
我们前面强调过,设计一个适合依赖注入的类,可以让这个类更容易测试。
|
||
要有效的测试应用中的一部分,在构造函数的参数中列出依赖就是我们需要做的一切。
|
||
|
||
For example, we can create a new `HeroListComponent` with a mock service that we can manipulate
|
||
under test:
|
||
|
||
比如,我们可以使用一个mock服务来创建新的`HeroListComponent`实例,以便我们可以在测试中操纵它:
|
||
|
||
+makeExample('dependency-injection/ts/app/test.component.ts', 'spec')(format='.')
|
||
|
||
.l-sub-section
|
||
:marked
|
||
Learn more in [Testing](../testing/index.html).
|
||
|
||
要学习更多知识,参见[测试](../testing/index.html)。
|
||
|
||
:marked
|
||
### When the service needs a service
|
||
### 服务需要别的服务
|
||
|
||
Our `HeroService` is very simple. It doesn't have any dependencies of its own.
|
||
|
||
我们的`HeroService`非常简单。它本身不需要任何依赖。
|
||
|
||
What if it had a dependency? What if it reported its activities through a logging service?
|
||
We'd apply the same *constructor injection* pattern,
|
||
adding a constructor that takes a `Logger` parameter.
|
||
|
||
如果它有依赖呢?如果它需要通过一个日志服务来汇报自己的活动呢?
|
||
我们同样用*构造函数注入*模式,来添加一个带有`Logger`参数的构造函数。
|
||
|
||
Here is the revision compared to the original.
|
||
|
||
下面是在原始类的基础上所做的修改:
|
||
|
||
+makeTabs(
|
||
`dependency-injection/ts/app/heroes/hero.service.2.ts,
|
||
dependency-injection/ts/app/heroes/hero.service.1.ts`,
|
||
null,
|
||
`app/heroes/hero.service (v2),
|
||
app/heroes/hero.service (v1)`)
|
||
|
||
:marked
|
||
The constructor now asks for an injected instance of a `Logger` and stores it in a private property called `#{_priv}logger`.
|
||
We call that property within our `getHeroes` method when anyone asks for heroes.
|
||
|
||
现在,这个构造函数会要求一个`Logger`类的实例注入进来,并且把它存到一个名为`_logger`的私有属性中。
|
||
当别人要求获得英雄数据时,我们会在`getHeroes`方法中使用这个属性。
|
||
|
||
//- FIXME refer to Dart API when that page becomes available.
|
||
- var injMetaUrl = 'https://angular.io/docs/ts/latest/api/core/index/InjectableMetadata-class.html';
|
||
h3#injectable Why @Injectable()?
|
||
h3#injectable 为何@Injectable()?
|
||
:marked
|
||
**<a href="#{injMetaUrl}">@Injectable()</a>** marks a class as available to an
|
||
injector for instantiation. Generally speaking, an injector will report an
|
||
error when trying to instantiate a class that is not marked as
|
||
`@Injectable()`.
|
||
|
||
**<a href="#{injMetaUrl}">@Injectable()</a>**标志着一个类可以被一个注入器实例化。通常来讲,在试图实例化一个没有被标识为`@Injectable()`的类时候,注入器将会报告错误。
|
||
|
||
block injectable-not-always-needed-in-ts
|
||
.l-sub-section
|
||
:marked
|
||
As it happens, we could have omitted `@Injectable()` from our first
|
||
version of `HeroService` because it had no injected parameters.
|
||
But we must have it now that our service has an injected dependency.
|
||
We need it because Angular requires constructor parameter metadata
|
||
in order to inject a `Logger`.
|
||
|
||
在这里,我们可以在我们第一版的`HeroService`里面省略`@Injectable()`,因为它没有注入的参数。但是现在我们必须要有它,因为我们的服务有了一个注入的依赖。我们需要它,因为Angular需要构造函数参数的元数据来注入一个`Logger`。
|
||
|
||
.callout.is-helpful
|
||
header Suggestion: add @Injectable() to every service class
|
||
header 建议:为每一个服务类都添加@Injectable()
|
||
:marked
|
||
We recommend adding `@Injectable()` to every service class, even those that don't have dependencies
|
||
and, therefore, do not technically require it. Here's why:
|
||
|
||
我们建议为每个服务类都添加`@Injectable()`,包括那些没有依赖所以技术上不需要它的。因为:
|
||
|
||
ul(style="font-size:inherit")
|
||
li <b>Future proofing:</b> No need to remember <code>@Injectable()</code> when we add a dependency later.
|
||
li <b>面向未来:</b> 没有必要记得在后来添加了一个依赖的时候添加<code>@Injectable()</code>。
|
||
li <b>Consistency:</b> All services follow the same rules, and we don't have to wonder why #{_a} #{_decorator} is missing.
|
||
li <b>一致性:</b>所有的服务都遵循同样的规则,并且我们不需要考虑为什么少一个装饰器。
|
||
|
||
|
||
:marked
|
||
Injectors are also responsible for instantiating components
|
||
like `HeroesComponent`. Why haven't we marked `HeroesComponent` as
|
||
`@Injectable()`?
|
||
|
||
注入器同时负责实例化像`HerosComponent`这样的组件。为什么我们不标记`HerosComponent`为`@Injectable()`呢?
|
||
|
||
We *can* add it if we really want to. It isn't necessary because the
|
||
`HeroesComponent` is already marked with `@Component`, and this
|
||
!{_decorator} class (like `@Directive` and `@Pipe`, which we'll learn about later)
|
||
is a subtype of <a href="#{injMetaUrl}">InjectableMetadata</a>. It is in
|
||
fact `InjectableMetadata` #{_decorator}s that
|
||
identify a class as a target for instantiation by an injector.
|
||
|
||
如果真的想要这样做,我们*可以*添加它。但是这不是必须的,因为`HerosComponent`已经被`@Component`标识,这个装饰器类(像`@Directive`和`@Pipe`一样,我们一会儿将会学到)
|
||
是一个<a href="#{injMetaUrl}">InjectableMetadata</a>的子类型。实际上,`InjectableMetadata`装饰器标识着一个类是注入器实例化的目标。
|
||
|
||
|
||
block ts-any-decorator-will-do
|
||
.l-sub-section
|
||
:marked
|
||
Injectors use a class's constructor metadata to determine dependent types as
|
||
identified by the constructor's parameter types.
|
||
TypeScript generates such metadata for any class with a decorator, and any decorator will do.
|
||
But of course, it is more meaningful to mark a class using the appropriate
|
||
<a href="#{injMetaUrl}">InjectableMetadata</a> #{_decorator}.
|
||
|
||
注入器使用一个类的构造元数据来决定依赖类型,该构造元数据就是构造函数的参数类型所标识的。
|
||
TypeScript为任何带有一个装饰器的类生成这样的元数据,任何装饰器都生成。
|
||
当然,使用一个合适的<a href="#{injMetaUrl}">InjectableMetadata</a>装饰器来标识一个类更加有意义。
|
||
|
||
.callout.is-critical
|
||
header Always include the parentheses
|
||
|
||
header 总要带着括号
|
||
|
||
block always-include-paren
|
||
:marked
|
||
Always write `@Injectable()`, not just `@Injectable`.
|
||
Our application will fail mysteriously if we forget the parentheses.
|
||
|
||
总是使用`@Injectable()`的形式,不能只用`@Injectable`。
|
||
如果忘了括号,我们的应用就会神不知鬼不觉的失败!
|
||
|
||
.l-main-section#logger-service
|
||
:marked
|
||
## Creating and registering a logger service
|
||
## 创建和注册日志服务
|
||
|
||
We're injecting a logger into our `HeroService` in two steps:
|
||
|
||
要把日志服务注入到`HeroService`中需要两步:
|
||
|
||
1. Create the logger service.
|
||
|
||
1. 创建日志服务。
|
||
|
||
1. Register it with the application.
|
||
|
||
1. 把它注册到应用中。
|
||
|
||
Our logger service is quite simple:
|
||
|
||
我们的日志服务很简单:
|
||
|
||
+makeExample('dependency-injection/ts/app/logger.service.ts', null, 'app/logger.service.ts')
|
||
|
||
block real-logger
|
||
//- N/A
|
||
|
||
:marked
|
||
We're likely to need the same logger service everywhere in our application,
|
||
so we put it in the project's `#{_appDir}` folder, and
|
||
we register it in the `providers` #{_array} of the metadata for our application root component, `AppComponent`.
|
||
|
||
我们比较可能在整个应用程序的任何地方都需要一样的日志服务,所以我们把它放到项目的`#{_appDir}`目录,并在应用程序根组件`AppComponent`的元数据的`providers`数组里面注册它。
|
||
|
||
+makeExcerpt('app/providers.component.ts','providers-logger','app/app.component.ts (excerpt)')
|
||
|
||
:marked
|
||
If we forget to register the logger, Angular throws an exception when it first looks for the logger:
|
||
|
||
如果我们忘了注册这个日志服务,Angular会在首次查找这个日志服务时,抛出一个异常。
|
||
|
||
code-example(format="nocode").
|
||
EXCEPTION: No provider for Logger! (HeroListComponent -> HeroService -> Logger)
|
||
(异常:Logger类没有供应商!(HeroListComponent -> HeroService -> Logger))
|
||
|
||
:marked
|
||
That's Angular telling us that the dependency injector couldn't find the *provider* for the logger.
|
||
It needed that provider to create a `Logger` to inject into a new
|
||
`HeroService`, which it needed to
|
||
create and inject into a new `HeroListComponent`.
|
||
|
||
Angular这是在告诉我们,依赖注入器找不到日志服务的*供应商*。在创建`HeroListComponent`的新实例时需要创建和注入`HeroService`,然后`HeroService`需要创建和注入一个`Logger`实例,Angular需要这个供应商来创建一个`Logger`实例。
|
||
|
||
The chain of creations started with the `Logger` provider. *Providers* are the subject of our next section.
|
||
|
||
这个“创建链”始于`Logger`的供应商。这个*供应商*就是我们下一节的主题。
|
||
|
||
.l-main-section#providers
|
||
:marked
|
||
## Injector providers
|
||
## 注入器的供应商们
|
||
|
||
A provider *provides* the concrete, runtime version of a dependency value.
|
||
The injector relies on **providers** to create instances of the services
|
||
that the injector injects into components and other services.
|
||
|
||
供应商*提供*所需依赖值的一个具体的运行期版本。
|
||
注入器依靠**供应商们**来创建服务的实例,它会被注入器注入到组件或其它服务中。
|
||
|
||
We must register a service *provider* with the injector, or it won't know how to create the service.
|
||
|
||
我们必须为注入器注册一个服务的*供应商*,否则它就不知道该如何创建此服务。
|
||
|
||
Earlier we registered the `Logger` service in the `providers` #{_array} of the metadata for the `AppComponent` like this:
|
||
|
||
以前,我们通过`AppComponent`元数据中的`providers`数组注册过`Logger`服务,就像这样:
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-logger')
|
||
|
||
- var implements = lang == 'dart' ? 'implements' : 'looks and behaves like a '
|
||
- var implementsCn = lang == 'dart' ? '实现' : '表现和行为像'
|
||
- var objectlike = lang == 'dart' ? '' : 'an object that behaves like '
|
||
- var objectlikeCn = lang == 'dart' ? '' : '一个对象,其行为像'
|
||
- var loggerlike = lang == 'dart' ? '' : 'We could provide a logger-like object. '
|
||
- var loggerlikeCn = lang == 'dart' ? '' : '也就是可以提供一个像logger的对象。'
|
||
|
||
:marked
|
||
There are many ways to *provide* something that #{implements} `Logger`.
|
||
The `Logger` class itself is an obvious and natural provider.
|
||
But it's not the only way.
|
||
|
||
有很多方式可以*提供*一些#{implementsCn} `Logger`类的东西。
|
||
`Logger`类本身是一个显而易见而且自然而然的供应商 —— 它有正确的形态,并且它设计出来就是等着被创建的。
|
||
但它不是唯一的选项。
|
||
|
||
We can configure the injector with alternative providers that can deliver #{objectlike} a `Logger`.
|
||
We could provide a substitute class. #{loggerlike}
|
||
We could give it a provider that calls a logger factory function.
|
||
Any of these approaches might be a good choice under the right circumstances.
|
||
|
||
我们可以使用其它备选供应商来配置这个注入器,只要它们能交付#{objectlikeCn}`Logger`就可以了。
|
||
我们可以提供一个替身类。#{loggerlikeCn}
|
||
我们可以给它一个供应商,让它调用一个可以创建日志服务的工厂函数。
|
||
所有这些方法,只要用在正确的场合,都可能是一个好的选择。
|
||
|
||
What matters is that the injector has a provider to go to when it needs a `Logger`.
|
||
|
||
最重要的是:当注入器需要一个`Logger`时,它得先有一个供应商。
|
||
|
||
//- Dart limitation: the provide function isn't const so it cannot be used in an annotation.
|
||
- var __andProvideFn = _docsFor == 'dart' ? '' : 'and <i>provide</i> object literal';
|
||
- var __andProvideFn = _docsFor == 'dart' ? '' : '和 <i>provide</i> 对象';
|
||
#provide
|
||
:marked
|
||
### *Provider* 类!{__andProvideFn}
|
||
:marked
|
||
We wrote the `providers` #{_array} like this:
|
||
|
||
我们像下面一样写`providers`数组:
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-1')
|
||
|
||
p
|
||
| This is actually a short-hand expression for a provider registration
|
||
block canonical-provider-expr
|
||
| using a <i>provider</i> object literal with two properties:
|
||
p
|
||
| 这实际上是用_provider_对象的字面量注册供应商的缩写表达式。
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-3')
|
||
|
||
block provider-ctor-args
|
||
- var _secondParam = 'provider definition object';
|
||
|
||
:marked
|
||
The first is the [token](#token) that serves as the key for both locating a dependency value
|
||
and registering the provider.
|
||
|
||
第一个是[令牌token](#token),它作为键值key使用,用于定位依赖值,以及注册这个供应商。
|
||
|
||
The second is a !{_secondParam},
|
||
which we can think of as a *recipe* for creating the dependency value.
|
||
There are many ways to create dependency values ... and many ways to write a recipe.
|
||
|
||
第二个是一个!{_secondParam}。
|
||
我们可以把它看做一个指导如何创建依赖值的*配方*。
|
||
有很多方式创建依赖值…… 也有很多方式可以写配方。
|
||
|
||
#class-provider
|
||
:marked
|
||
### Alternative class providers
|
||
|
||
### 备选的“类”供应商
|
||
|
||
Occasionally we'll ask a different class to provide the service.
|
||
The following code tells the injector
|
||
to return a `BetterLogger` when something asks for the `Logger`.
|
||
|
||
某些时候,我们会请求一个不同的类来提供服务。
|
||
下列代码告诉注入器:当有人请求一个`Logger`时,请返回一个`BetterLogger`。
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-4')
|
||
|
||
block dart-diff-const-metadata
|
||
//- N/A
|
||
|
||
:marked
|
||
### Class provider with dependencies
|
||
|
||
### 带依赖的类供应商
|
||
|
||
Maybe an `EvenBetterLogger` could display the user name in the log message.
|
||
This logger gets the user from the injected `UserService`,
|
||
which happens also to be injected at the application level.
|
||
|
||
也许一个`EvenBetterLogger`(更好的日志)可以在日志消息中显示用户名。
|
||
这个日志服务从一个注入进来的`UserService`中取得用户,`UserService`通常也会在应用级被注入。
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','EvenBetterLogger')(format='.')
|
||
|
||
:marked
|
||
Configure it like we did `BetterLogger`.
|
||
|
||
就像我们在`BetterLogger`中那样配置它。
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-5')(format=".")
|
||
|
||
:marked
|
||
### Aliased class providers
|
||
|
||
### 别名类供应商
|
||
|
||
Suppose an old component depends upon an `OldLogger` class.
|
||
`OldLogger` has the same interface as the `NewLogger`, but for some reason
|
||
we can't update the old component to use it.
|
||
|
||
假设一个老的组件依赖于一个`OldLogger`类。
|
||
`OldLogger`有和`NewLogger`相同的接口,但是由于某些原因,我们不能升级这个老组件并使用它。
|
||
|
||
When the *old* component logs a message with `OldLogger`,
|
||
we want the singleton instance of `NewLogger` to handle it instead.
|
||
|
||
当*老的*组件想使用`OldLogger`记录消息时,我们希望改用`NewLogger`的单例对象来记录。
|
||
|
||
The dependency injector should inject that singleton instance
|
||
when a component asks for either the new or the old logger.
|
||
The `OldLogger` should be an alias for `NewLogger`.
|
||
|
||
不管组件请求的是新的还是老的日志服务,依赖注入器注入的都应该是同一个单例对象。
|
||
也就是说,`OldLogger`应该是`NewLogger`的一个别名。
|
||
|
||
We certainly do not want two different `NewLogger` instances in our app.
|
||
Unfortunately, that's what we get if we try to alias `OldLogger` to `NewLogger` with `useClass`.
|
||
|
||
我们当然不会希望应用中有两个`NewLogger`的不同实例。
|
||
不幸的是,如果我们尝试通过`useClass`来把`NewLogger`作为`OldLogger`的别名,就会导致这样的后果。
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-6a')(format=".")
|
||
|
||
:marked
|
||
The solution: Alias with the `useExisting` option.
|
||
|
||
解决方案:使用`useExisting`选项指定别名。
|
||
|
||
- var stylePattern = { otl: /(useExisting: \w*)/gm };
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-6b', '', stylePattern)(format=".")
|
||
|
||
#value-provider
|
||
:marked
|
||
### Value providers
|
||
|
||
### 值供应商
|
||
|
||
:marked
|
||
Sometimes it's easier to provide a ready-made object rather than ask the injector to create it from a class.
|
||
|
||
有时,提供一个预先做好的对象会比请求注入器从类中创建它更容易。
|
||
|
||
block dart-diff-const-metadata-ctor
|
||
//- N/A
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','silent-logger')(format=".")
|
||
|
||
:marked
|
||
Then we register a provider with the `useValue` option,
|
||
which makes this object play the logger role.
|
||
|
||
于是我们可以通过`useValue`选项来注册一个供应商,它会让这个对象直接扮演logger的角色。
|
||
|
||
- var stylePattern = { otl: /(useValue: \w*)/gm };
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-7', '', stylePattern)(format=".")
|
||
|
||
:marked
|
||
See more `useValue` examples in the
|
||
[Non-class dependencies](#non-class-dependencies) and
|
||
[OpaqueToken](#opaquetoken) sections.
|
||
|
||
在[非类依赖](#non-class-dependencies)和[OpaqueToken](#opaquetoken)查看更多`useValue`的例子。
|
||
|
||
#factory-provider
|
||
:marked
|
||
### Factory providers
|
||
|
||
### 工厂供应商
|
||
|
||
Sometimes we need to create the dependent value dynamically,
|
||
based on information we won't have until the last possible moment.
|
||
Maybe the information changes repeatedly in the course of the browser session.
|
||
|
||
有时我们需要动态创建这个依赖值,因为它所需要的信息我们直到最后一刻才能确定。
|
||
比如,也许这个信息会在浏览器的会话中不停的变化。
|
||
|
||
Suppose also that the injectable service has no independent access to the source of this information.
|
||
|
||
假设这个可注入的服务没法通过独立的源访问此信息。
|
||
|
||
This situation calls for a **factory provider**.
|
||
|
||
这种情况下,请呼叫**工厂供应商**。
|
||
|
||
Let's illustrate by adding a new business requirement:
|
||
the HeroService must hide *secret* heroes from normal users.
|
||
Only authorized users should see secret heroes.
|
||
|
||
我们通过添加一个新的业务需求来说明这一点:
|
||
HeroService必须对普通用户隐藏掉*秘密*英雄。
|
||
只有获得授权的用户才能看到秘密英雄。
|
||
|
||
Like the `EvenBetterLogger`, the `HeroService` needs a fact about the user.
|
||
It needs to know if the user is authorized to see secret heroes.
|
||
That authorization can change during the course of a single application session,
|
||
as when we log in a different user.
|
||
|
||
就像`EvenBetterLogger`那样,`HeroService`需要了解此用户的身份。
|
||
它需要知道,这个用户是否有权看到隐藏英雄。
|
||
这个授权可能在一个单一的应用会话中被改变,比如我们改用另一个用户的身份登录时。
|
||
|
||
Unlike `EvenBetterLogger`, we can't inject the `UserService` into the `HeroService`.
|
||
The `HeroService` won't have direct access to the user information to decide
|
||
who is authorized and who is not.
|
||
|
||
和`EvenBetterLogger`不同,我们不能把`UserService`注入到`HeroService`中。
|
||
`HeroService`无权访问用户信息,来决定谁有授权谁没有授权。
|
||
|
||
.l-sub-section
|
||
:marked
|
||
Why? We don't know either. Stuff like this happens.
|
||
|
||
为什么?我们也不知道。这样的事经常发生。
|
||
|
||
:marked
|
||
Instead the `HeroService` constructor takes a boolean flag to control display of secret heroes.
|
||
|
||
让`HeroService`的构造函数带上一个布尔型的标志,来控制是否显示隐藏的英雄。
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero.service.ts','internals', 'app/heroes/hero.service.ts (excerpt)')(format='.')
|
||
|
||
:marked
|
||
We can inject the `Logger`, but we can't inject the boolean `isAuthorized`.
|
||
We'll have to take over the creation of new instances of this `HeroService` with a factory provider.
|
||
|
||
我们可以注入`Logger`,但是我们不能注入逻辑型的`isAuthorized`。
|
||
我们不得不通过通过一个工厂供应商创建这个`HeroService`的新实例。
|
||
|
||
A factory provider needs a factory function:
|
||
|
||
工厂供应商需要一个工厂方法:
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero.service.provider.ts','factory', 'app/heroes/hero.service.provider.ts (excerpt)')(format='.')
|
||
|
||
:marked
|
||
Although the `HeroService` has no access to the `UserService`, our factory function does.
|
||
|
||
虽然`HeroService`不能访问`UserService`,但是我们的工厂方法可以。
|
||
|
||
We inject both the `Logger` and the `UserService` into the factory provider and let the injector pass them along to the factory function:
|
||
|
||
我们同时把`Logger`和`UserService`注入到工厂供应商中,并且让注入器把它们传给工厂方法:
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero.service.provider.ts','provider', 'app/heroes/hero.service.provider.ts (excerpt)')(format='.')
|
||
|
||
.l-sub-section
|
||
:marked
|
||
The `useFactory` field tells Angular that the provider is a factory function
|
||
whose implementation is the `heroServiceFactory`.
|
||
|
||
`useFactory`字段告诉Angular:这个供应商是一个工厂方法,它的实现是`heroServiceFactory`。
|
||
|
||
The `deps` property is #{_an} #{_array} of [provider tokens](#token).
|
||
The `Logger` and `UserService` classes serve as tokens for their own class providers.
|
||
The injector resolves these tokens and injects the corresponding services into the matching factory function parameters.
|
||
|
||
`deps`属性是一个[供应商令牌](#token)数组。
|
||
`Logger`和`UserService`类作为它们自身供应商的令牌。
|
||
注入器解析这些令牌,并且把相应的服务注入到工厂函数中相应的参数中去。
|
||
|
||
- var anexportedvar = lang == 'dart' ? 'a constant' : 'an exported variable'
|
||
- var anexportedvarCn = lang == 'dart' ? '一个常量' : '一个导出的变量'
|
||
- var variable = lang == 'dart' ? 'constant' : 'variable'
|
||
- var variableCn = lang == 'dart' ? '常量' : '变量'
|
||
|
||
:marked
|
||
Notice that we captured the factory provider in #{_an} #{exportedvar}, `heroServiceProvider`.
|
||
This extra step makes the factory provider reusable.
|
||
We can register our `HeroService` with this #{variable} wherever we need it.
|
||
|
||
注意,我们在#{anexportedvarCn}中捕获了这个工厂供应商:`heroServiceProvider`。
|
||
这个额外的步骤让工厂供应商可被复用。
|
||
只要需要,我们就可以使用这个#{variableCn}注册`HeroService`,无论在哪儿。
|
||
|
||
In our sample, we need it only in the `HeroesComponent`,
|
||
where it replaces the previous `HeroService` registration in the metadata `providers` #{_array}.
|
||
Here we see the new and the old implementation side-by-side:
|
||
|
||
在这个例子中,我们只在`HeroesComponent`中需要它,
|
||
这里,它代替了元数据`providers`数组中原来的`HeroService`注册。
|
||
我们来对比一下新的和老的实现:
|
||
|
||
- var stylePattern = { otl: /(providers.*),$/gm };
|
||
+makeTabs(
|
||
`dependency-injection/ts/app/heroes/heroes.component.ts,
|
||
dependency-injection/ts/app/heroes/heroes.component.1.ts`,
|
||
',full',
|
||
`app/heroes/heroes.component (v3),
|
||
app/heroes/heroes.component (v2)`,
|
||
stylePattern)
|
||
|
||
.l-main-section#token
|
||
:marked
|
||
## Dependency injection tokens
|
||
## 依赖注入令牌
|
||
|
||
When we register a provider with an injector, we associate that provider with a dependency injection token.
|
||
The injector maintains an internal *token-provider* map that it references when
|
||
asked for a dependency. The token is the key to the map.
|
||
|
||
当我们为注入器注册一个供应商时,实际上是把这个供应商和一个DI令牌关联起来了。
|
||
注入器维护一个内部的*令牌-供应商*映射表,这个映射表会在请求一个依赖时被引用到。
|
||
令牌就是这个映射表中的键值key。
|
||
|
||
In all previous examples, the dependency value has been a class *instance*, and
|
||
the class *type* served as its own lookup key.
|
||
Here we get a `HeroService` directly from the injector by supplying the `HeroService` type as the token:
|
||
|
||
在以前的所有范例中,依赖值都是一个类*实例*,并且类的*类型*是它自己的查找键值。
|
||
这种情况下,我们实际上是直接从注入器中以`HeroService`类型作为令牌,来获取一个`HeroService` 实例。
|
||
|
||
+makeExample('dependency-injection/ts/app/injector.component.ts','get-hero-service')(format='.')
|
||
|
||
:marked
|
||
We have similar good fortune when we write a constructor that requires an injected class-based dependency.
|
||
We define a constructor parameter with the `HeroService` class type,
|
||
and Angular knows to inject the
|
||
service associated with that `HeroService` class token:
|
||
|
||
写一个需要基于类的依赖注入的构造函数对我们来说是很幸运的。
|
||
我们只要以`HeroService`类为类型,定义一个构造函数参数,Angular就会知道把跟`HeroService`类令牌关联的服务注入进来:
|
||
|
||
+makeExample('dependency-injection/ts/app/heroes/hero-list.component.ts', 'ctor-signature')
|
||
|
||
:marked
|
||
This is especially convenient when we consider that most dependency values are provided by classes.
|
||
|
||
这是一个特殊的规约,因为我们考虑到大多数依赖值都是以类的形式提供的。
|
||
|
||
//- TODO: if function injection is useful explain or illustrate why.
|
||
:marked
|
||
### Non-class dependencies
|
||
### 非类依赖
|
||
|
||
What if the dependency value isn't a class? Sometimes the thing we want to inject is a string, function, or object.
|
||
|
||
如果依赖值不是一个类呢?有时候我们想要注入的东西是一个字符串,函数或者对象。
|
||
|
||
Applications often define configuration objects with lots of small facts(like the title of the application or
|
||
the address of a web API endpoint) but these configuration objects aren't always instances of a class.
|
||
They can be object literals such as this one:
|
||
|
||
应用程序经常为很多很小的因素(比如应用程序的标题,或者一个网络API终点的地址)定义配置对象,但是这些配置对象不总是类的实例。
|
||
他们可能是对象,比如下面这个:
|
||
|
||
+makeExample('dependency-injection/ts/app/app.config.ts','config','app/app-config.ts (excerpt)')(format='.')
|
||
|
||
:marked
|
||
We'd like to make this configuration object available for injection.
|
||
We know we can register an object with a [value provider](#value-provider).
|
||
|
||
我们想让这个`config`对象在注入时可用。
|
||
我们已经知道可以使用一个[值供应商](#value-provider)来注册一个对象。
|
||
|
||
block what-should-we-use-as-token
|
||
:marked
|
||
But what should we use as the token?
|
||
We don't have a class to serve as a token.
|
||
There is no `AppConfig` class.
|
||
|
||
但是这种情况下我们要把什么用作令牌呢?
|
||
我们没办法找一个类来当做令牌,因为没有`Config`类。
|
||
.l-sub-section#interface
|
||
:marked
|
||
### TypeScript interfaces aren't valid tokens
|
||
### TypeScript接口不是一个有效的令牌
|
||
|
||
The `HERO_DI_CONFIG` constant has an interface, `AppConfig`. Unfortunately, we
|
||
cannot use a TypeScript interface as a token:
|
||
|
||
`CONFIG`常量有一个接口:`Config`。不幸的是,我们不能把TypeScript接口用作令牌:
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-9-interface')(format=".")
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','provider-9-ctor-interface')(format=".")
|
||
:marked
|
||
That seems strange if we're used to dependency injection in strongly typed languages, where
|
||
an interface is the preferred dependency lookup key.
|
||
|
||
如果我们是在一个强类型的语言中使用依赖注入,这会看起来很奇怪,强类型语言中,接口是首选的用于查找依赖的主键。
|
||
|
||
It's not Angular's fault. An interface is a TypeScript design-time artifact. JavaScript doesn't have interfaces.
|
||
The TypeScript interface disappears from the generated JavaScript.
|
||
There is no interface type information left for Angular to find at runtime.
|
||
|
||
这不是Angular的错。接口只是TypeScript的一个设计期概念。JavaScript没有接口。
|
||
在生成JavaScript代码时,TypeScript的接口就消失了。
|
||
在运行期,没有接口类型信息可供Angular查找。
|
||
// end Typescript only
|
||
|
||
//- FIXME simplify once APIs are defined for Dart.
|
||
- var opaquetoken = _docsFor == 'dart' ? '<b>OpaqueToken</b>' : '<a href="../api/core/OpaqueToken-class.html"><b>OpaqueToken</b></a>'
|
||
:marked
|
||
### OpaqueToken
|
||
|
||
One solution to choosing a provider token for non-class dependencies is
|
||
to define and use an !{opaquetoken}.
|
||
The definition looks like this:
|
||
|
||
解决方案是定义和使用一个!{opaquetoken}(不透明的令牌)。定义方式类似于这样:
|
||
|
||
+makeExample('dependency-injection/ts/app/app.config.ts','token')(format='.')
|
||
|
||
:marked
|
||
We register the dependency provider using the `OpaqueToken` object:
|
||
|
||
我们使用这个`OpaqueToken`对象注册依赖的供应商:
|
||
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','providers-9')(format=".")
|
||
|
||
:marked
|
||
Now we can inject the configuration object into any constructor that needs it, with
|
||
the help of an `@Inject` #{_decorator}:
|
||
|
||
现在,在`@Inject`#{decoratorCn}的帮助下,我们可以把这个配置对象注入到任何需要它的构造函数中:
|
||
|
||
+makeExample('dependency-injection/ts/app/app.component.2.ts','ctor')(format=".")
|
||
|
||
- var configType = _docsFor == 'dart' ? '<code>Map</code>' : '<code>AppConfig</code>'
|
||
.l-sub-section
|
||
:marked
|
||
Although the !{configType} interface plays no role in dependency injection,
|
||
it supports typing of the configuration object within the class.
|
||
|
||
虽然`Config`!{configType}接口在依赖注入过程中没有任何作用,但它为该类中的配置对象提供了强类型信息。
|
||
|
||
block dart-map-alternative
|
||
:marked
|
||
Or we can provide and inject the configuration object in our top-level `AppComponent`.
|
||
|
||
或者我们在顶级组件`AppComponent`中提供并注入这个配置对象。
|
||
|
||
+makeExcerpt('app/app.component.ts','providers')
|
||
|
||
#optional
|
||
:marked
|
||
## Optional dependencies
|
||
## 可选依赖
|
||
|
||
Our `HeroService` *requires* a `Logger`, but what if it could get by without
|
||
a logger?
|
||
We can tell Angular that the dependency is optional by annotating the
|
||
constructor argument with `@Optional()`:
|
||
|
||
我们的`HeroService`*需要*一个`Logger`,但是如果它可以不用一个Logger就行呢?
|
||
我们可以通过把构造函数的参数标记为`@Optional()`来告诉Angular该依赖是可选的:
|
||
|
||
+ifDocsFor('ts')
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','import-optional', '')
|
||
+makeExample('dependency-injection/ts/app/providers.component.ts','provider-10-ctor', '')(format='.')
|
||
|
||
:marked
|
||
When using `@Optional()`, our code must be prepared for a null value. If we
|
||
don't register a logger somewhere up the line, the injector will set the
|
||
value of `logger` to null.
|
||
|
||
当使用`@Optional()`时,我们的代码必须要为一个空值做准备。如果我们不在组件或父级组件中注册一个`logger`的话,注入器会设置该`logger`的值为空null。
|
||
|
||
.l-main-section
|
||
:marked
|
||
## Summary
|
||
## 总结
|
||
|
||
We learned the basics of Angular dependency injection in this chapter.
|
||
We can register various kinds of providers,
|
||
and we know how to ask for an injected object (such as a service) by
|
||
adding a parameter to a constructor.
|
||
|
||
在本章中,我们学习了Angular依赖注入的基础。
|
||
我们可以注册很多种类的供应商,还知道了该如何通过添加构造函数的参数来请求一个被注入对象(比如服务)。
|
||
|
||
Angular dependency injection is more capable than we've described.
|
||
We can learn more about its advanced features, beginning with its support for
|
||
nested injectors, in the
|
||
[Hierarchical Dependency Injection](hierarchical-dependency-injection.html) chapter.
|
||
|
||
Angular依赖注入比我们描述的更能干。
|
||
我们还可以学到它的更多高级特性,从它对嵌套注入器的支持开始,参见[多级依赖注入](hierarchical-dependency-injection.html)一章。
|
||
|
||
.l-main-section#explicit-injector
|
||
:marked
|
||
## Appendix: Working with injectors directly
|
||
## 附录:直接使用注入器工作
|
||
|
||
We rarely work directly with an injector.
|
||
Here's an `InjectorComponent` that does.
|
||
|
||
这里的`InjectorComponent`直接使用了注入器,
|
||
但我们很少直接使用注入器工作。
|
||
// #enddocregion appendix-explicit-injector-1
|
||
+makeExample('dependency-injection/ts/app/injector.component.ts', 'injector', 'app/injector.component.ts')
|
||
|
||
:marked
|
||
The `Injector` is itself an injectable service.
|
||
|
||
`Injector`本身是一个可注入的服务。
|
||
|
||
|
||
In this example, Angular injects the component's own `Injector` into the component's constructor.
|
||
The component then asks the injected injector for the services it wants.
|
||
|
||
在这个例子中,Angular把组件自身的`Injector`注入到了组件的构造函数中。
|
||
然后组件向注入进来的这个注入器请求它所需的服务。
|
||
|
||
Note that the services themselves are not injected into the component.
|
||
They are retrieved by calling `injector.get`.
|
||
|
||
注意,这些服务本身没有被注入到组件中,它们是通过调用`injector.get`获得的。
|
||
|
||
The `get` method throws an error if it can't resolve the requested service.
|
||
We can call `get` with a second parameter (the value to return if the service is not found)
|
||
instead, which we do in one case
|
||
to retrieve a service (`ROUS`) that isn't registered with this or any ancestor injector.
|
||
|
||
`get`方法如果解析不出所请求的服务,它就会抛出一个异常。
|
||
我们还可以带上第二个参数(如果服务没找到,就把它作为默认值返回)调用`get`,
|
||
在该例子中,我们获取了一个服务(`ROUS`),它没有在这个注入器或它的任何祖先中注册过。
|
||
.l-sub-section
|
||
:marked
|
||
The technique we just described is an example of the
|
||
[service locator pattern](https://en.wikipedia.org/wiki/Service_locator_pattern).
|
||
|
||
我们刚描述的这项技术是[服务定位器模式](https://en.wikipedia.org/wiki/Service_locator_pattern)的一个范例。
|
||
|
||
We **avoid** this technique unless we genuinely need it.
|
||
It encourages a careless grab-bag approach such as we see here.
|
||
It's difficult to explain, understand, and test.
|
||
We can't know by inspecting the constructor what this class requires or what it will do.
|
||
It could acquire services from any ancestor component, not just its own.
|
||
We're forced to spelunk the implementation to discover what it does.
|
||
|
||
我们要**避免使用**此技术,除非我们确实需要它。
|
||
它会鼓励鲁莽的方法,就像我们在这里看到的。
|
||
它难以解释、理解和测试。
|
||
仅通过阅读构造函数,我们没法知道这个类需要什么或者它将做什么。
|
||
它可以从任何祖先组件中获得服务,而不仅仅是它自己。
|
||
我们会被迫深入它的实现,才可能明白它都做了啥。
|
||
|
||
Framework developers may take this approach when they
|
||
must acquire services generically and dynamically.
|
||
|
||
框架的开发人员可能会需要此方法 —— 当他们不得不以通用和动态的方式获取服务时。
|
||
// #enddocregion appendix-explicit-injector-2
|
||
|
||
block one-class-per-file-ts-tradeoffs
|
||
.l-main-section#one-class-per-file
|
||
:marked
|
||
## Appendix: Why we recommend one class per file
|
||
## 附录:为什么我们建议每个文件只放一个类
|
||
|
||
Having multiple classes in the same file is confusing and best avoided.
|
||
Developers expect one class per file. Keep them happy.
|
||
|
||
在同一个文件中有多个类容易造成混淆,最好避免。
|
||
开发人员期望每个文件只放一个类。这会让他们开心点。
|
||
|
||
|
||
If we scorn this advice and, say,
|
||
combine our `HeroService` class with the `HeroesComponent` in the same file,
|
||
**define the component last!**
|
||
If we define the component before the service,
|
||
we'll get a runtime null reference error.
|
||
|
||
如果我们蔑视这个建议,并且 —— 比如说 —— 把`HeroService`和`HeroesComponent`组合在同一个文件里,**就得把组件定义放在后面!**
|
||
如果我们把组件定义在了服务的前面,就会在运行时获得一个空指针错误。
|
||
|
||
.l-sub-section
|
||
:marked
|
||
We actually can define the component first with the help of the `forwardRef()` method as explained
|
||
in this [blog post](http://blog.thoughtram.io/angular/2015/09/03/forward-references-in-angular-2.html).
|
||
But why flirt with trouble?
|
||
Avoid the problem altogether by defining components and services in separate files.
|
||
|
||
在`forwardRef()`方法的帮助下,我们实际上也可以先定义组件。
|
||
它的原理解释在这个[博客](http://blog.thoughtram.io/angular/2015/09/03/forward-references-in-angular-2.html)中。
|
||
但是为什么要先给自己找麻烦呢?
|
||
还是通过在独立的文件中定义组件和服务,完全避免此问题吧。
|