2020-03-29 03:21:06 -04:00
|
|
|
|
<!-- toc -->
|
|
|
|
|
|
|
|
|
|
## Roll-up
|
|
|
|
|
|
|
|
|
|
Apache Druid可以通过roll-up在数据摄取阶段对原始数据进行汇总。 Roll-up是对选定列集的一级聚合操作,它可以减小存储数据的大小。
|
|
|
|
|
|
|
|
|
|
本教程中将讨论在一个示例数据集上进行roll-up的结果。
|
|
|
|
|
|
|
|
|
|
本教程我们假设您已经按照[单服务器部署](../GettingStarted/chapter-3.md)中描述下载了Druid,并运行在本地机器上。
|
|
|
|
|
|
|
|
|
|
完成[加载本地文件](./chapter-1.md)和[数据查询](./chapter-4.md)两部分内容也是非常有帮助的。
|
|
|
|
|
|
|
|
|
|
### 示例数据
|
|
|
|
|
|
|
|
|
|
对于本教程,我们将使用一个网络流事件数据的小样本,表示在特定时间内从源到目标IP地址的流量的数据包和字节计数。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:35Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":20,"bytes":9024}
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:51Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":255,"bytes":21133}
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:59Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":11,"bytes":5780}
|
|
|
|
|
{"timestamp":"2018-01-01T01:02:14Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":38,"bytes":6289}
|
|
|
|
|
{"timestamp":"2018-01-01T01:02:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":377,"bytes":359971}
|
|
|
|
|
{"timestamp":"2018-01-01T01:03:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":49,"bytes":10204}
|
|
|
|
|
{"timestamp":"2018-01-02T21:33:14Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":38,"bytes":6289}
|
|
|
|
|
{"timestamp":"2018-01-02T21:33:45Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":123,"bytes":93999}
|
|
|
|
|
{"timestamp":"2018-01-02T21:35:45Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":12,"bytes":2818}
|
|
|
|
|
```
|
|
|
|
|
位于 `quickstart/tutorial/rollup-data.json` 的文件包含了样例输入数据
|
|
|
|
|
|
2020-03-30 01:51:43 -04:00
|
|
|
|
我们将使用 `quickstart/tutorial/rollup-index.json` 的摄入数据规范来摄取数据
|
2020-03-29 03:21:06 -04:00
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{
|
|
|
|
|
"type" : "index_parallel",
|
|
|
|
|
"spec" : {
|
|
|
|
|
"dataSchema" : {
|
|
|
|
|
"dataSource" : "rollup-tutorial",
|
|
|
|
|
"dimensionsSpec" : {
|
|
|
|
|
"dimensions" : [
|
|
|
|
|
"srcIP",
|
|
|
|
|
"dstIP"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"timestampSpec": {
|
|
|
|
|
"column": "timestamp",
|
|
|
|
|
"format": "iso"
|
|
|
|
|
},
|
|
|
|
|
"metricsSpec" : [
|
|
|
|
|
{ "type" : "count", "name" : "count" },
|
|
|
|
|
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
|
|
|
|
|
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" }
|
|
|
|
|
],
|
|
|
|
|
"granularitySpec" : {
|
|
|
|
|
"type" : "uniform",
|
|
|
|
|
"segmentGranularity" : "week",
|
|
|
|
|
"queryGranularity" : "minute",
|
|
|
|
|
"intervals" : ["2018-01-01/2018-01-03"],
|
|
|
|
|
"rollup" : true
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"ioConfig" : {
|
|
|
|
|
"type" : "index_parallel",
|
|
|
|
|
"inputSource" : {
|
|
|
|
|
"type" : "local",
|
|
|
|
|
"baseDir" : "quickstart/tutorial",
|
|
|
|
|
"filter" : "rollup-data.json"
|
|
|
|
|
},
|
|
|
|
|
"inputFormat" : {
|
|
|
|
|
"type" : "json"
|
|
|
|
|
},
|
|
|
|
|
"appendToExisting" : false
|
|
|
|
|
},
|
|
|
|
|
"tuningConfig" : {
|
|
|
|
|
"type" : "index_parallel",
|
|
|
|
|
"maxRowsPerSegment" : 5000000,
|
|
|
|
|
"maxRowsInMemory" : 25000
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
通过在 `granularitySpec` 选项中设置 `rollup : true` 来启用Roll-up
|
|
|
|
|
|
|
|
|
|
注意,我们将`srcIP`和`dstIP`定义为**维度**,将`packets`和`bytes`列定义为了`longSum`类型的**指标**,并将 `queryGranularity` 配置定义为 `minute`。
|
|
|
|
|
|
|
|
|
|
加载这些数据后,我们将看到如何使用这些定义。
|
|
|
|
|
|
|
|
|
|
### 加载示例数据
|
|
|
|
|
|
|
|
|
|
在Druid的根目录下运行以下命令:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
bin/post-index-task --file quickstart/tutorial/rollup-index.json --url http://localhost:8081
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
脚本运行完成以后,我们将查询数据。
|
|
|
|
|
|
|
|
|
|
### 查询示例数据
|
|
|
|
|
|
|
|
|
|
现在运行 `bin/dsql` 然后执行查询 `select * from "rollup-tutorial";` 来查看已经被摄入的数据。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
$ bin/dsql
|
|
|
|
|
Welcome to dsql, the command-line client for Druid SQL.
|
|
|
|
|
Type "\h" for help.
|
|
|
|
|
dsql> select * from "rollup-tutorial";
|
|
|
|
|
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
|
|
|
|
|
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
|
|
|
|
|
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
|
|
|
|
|
│ 2018-01-01T01:01:00.000Z │ 35937 │ 3 │ 2.2.2.2 │ 286 │ 1.1.1.1 │
|
|
|
|
|
│ 2018-01-01T01:02:00.000Z │ 366260 │ 2 │ 2.2.2.2 │ 415 │ 1.1.1.1 │
|
|
|
|
|
│ 2018-01-01T01:03:00.000Z │ 10204 │ 1 │ 2.2.2.2 │ 49 │ 1.1.1.1 │
|
|
|
|
|
│ 2018-01-02T21:33:00.000Z │ 100288 │ 2 │ 8.8.8.8 │ 161 │ 7.7.7.7 │
|
|
|
|
|
│ 2018-01-02T21:35:00.000Z │ 2818 │ 1 │ 8.8.8.8 │ 12 │ 7.7.7.7 │
|
|
|
|
|
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
|
|
|
|
|
Retrieved 5 rows in 1.18s.
|
|
|
|
|
|
|
|
|
|
dsql>
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
我们来看发生在 `2018-01-01T01:01` 的三条原始数据:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:35Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":20,"bytes":9024}
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:51Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":255,"bytes":21133}
|
|
|
|
|
{"timestamp":"2018-01-01T01:01:59Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":11,"bytes":5780}
|
|
|
|
|
```
|
|
|
|
|
这三条数据已经被roll up为以下一行数据:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
|
|
|
|
|
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
|
|
|
|
|
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
|
|
|
|
|
│ 2018-01-01T01:01:00.000Z │ 35937 │ 3 │ 2.2.2.2 │ 286 │ 1.1.1.1 │
|
|
|
|
|
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
这输入的数据行已经被按照时间列和维度列 `{timestamp, srcIP, dstIP}` 在指标列 `{packages, bytes}` 上做求和聚合
|
|
|
|
|
|
2020-03-30 01:51:43 -04:00
|
|
|
|
在进行分组之前,原始输入数据的时间戳按分钟进行标记/布局,这是由于摄取规范中的 `"queryGranularity":"minute"` 设置造成的。
|
2020-03-29 03:21:06 -04:00
|
|
|
|
同样,`2018-01-01T01:02` 期间发生的这两起事件也已经汇总。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{"timestamp":"2018-01-01T01:02:14Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":38,"bytes":6289}
|
|
|
|
|
{"timestamp":"2018-01-01T01:02:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":377,"bytes":359971}
|
|
|
|
|
```
|
|
|
|
|
```
|
|
|
|
|
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
|
|
|
|
|
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
|
|
|
|
|
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
|
|
|
|
|
│ 2018-01-01T01:02:00.000Z │ 366260 │ 2 │ 2.2.2.2 │ 415 │ 1.1.1.1 │
|
|
|
|
|
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
对于记录1.1.1.1和2.2.2.2之间流量的最后一个事件没有发生汇总,因为这是 `2018-01-01T01:03` 期间发生的唯一事件
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
{"timestamp":"2018-01-01T01:03:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":49,"bytes":10204}
|
|
|
|
|
```
|
|
|
|
|
```
|
|
|
|
|
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
|
|
|
|
|
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
|
|
|
|
|
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
|
|
|
|
|
│ 2018-01-01T01:03:00.000Z │ 10204 │ 1 │ 2.2.2.2 │ 49 │ 1.1.1.1 │
|
|
|
|
|
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
请注意,`计数指标 count` 显示原始输入数据中有多少行贡献给最终的"roll up"行。
|